我需要一个pytorch实现全景图像拼接的代码
时间: 2024-05-15 11:18:14 浏览: 154
您好,感谢您的提问。关于全景图像拼接的代码实现,以下是一个PyTorch实现的例子,供您参考:
```
import torch
import torch.nn as nn
class Panorama(nn.Module):
def __init__(self, img_shape, width):
super(Panorama, self).__init__()
self.width = width
self.pad = img_shape[2] // 4
self.img_shape = img_shape
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv5 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(self.width * self.pad * 2, 1024)
self.fc2 = nn.Linear(1024, self.width * self.pad * 2)
self.deconv1 = nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1)
self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1)
self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
self.deconv5 = nn.ConvTranspose2d(64, 3, kernel_size=9, stride=1, padding=4)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.relu(x)
x = self.conv6(x)
x = self.relu(x)
x = self.conv7(x)
x = self.relu(x)
x = self.conv8(x)
x = self.relu(x)
x = x.view(-1, self.width * self.pad * 2)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = x.view(-1, 512, self.pad * 2, self.width * 2)
x = self.deconv1(x)
x = self.relu(x)
x = self.deconv2(x)
x = self.relu(x)
x = self.deconv3(x)
x = self.relu(x)
x = self.deconv4(x)
x = self.relu(x)
x = self.deconv5(x)
return x
```
希望对您有所帮助,如有其他问题欢迎继续提问。
阅读全文