pytorch batch_size
时间: 2023-04-29 11:00:16 浏览: 160
PyTorch中的batch_size指的是在训练神经网络时,每次输入的数据样本数。例如,如果batch_size为32,则每次输入32个数据样本进行训练。batch_size的大小会影响训练速度和模型的性能。较大的batch_size可以加快训练速度,但可能会导致内存不足或梯度消失等问题。较小的batch_size可以提高模型的性能,但训练速度会变慢。因此,选择合适的batch_size是非常重要的。
相关问题
pytorch 按batch_size计算交叉熵损失如何编写代码
在PyTorch中,计算交叉熵损失使用的函数是nn.CrossEntropyLoss(),在这个函数中,我们可以设置参数size_average和reduce来控制loss的计算方式。其中,size_average和reduce这两个参数默认为True,表示对所有的loss值求平均值,当我们需要对每个样本单独计算loss时,这两个参数需要设置为False。对于batch_size计算交叉熵损失,我们可以先将输入数据与标签数据打包成一个batch,然后将其传给nn.CrossEntropyLoss()函数即可。具体代码实现如下:
import torch
import torch.nn as nn
input_size = 10
batch_size = 32
num_classes = 5
# 生成模拟数据
input_data = torch.randn(batch_size, input_size)
target_data = torch.randint(size=(batch_size,), low=0, high=num_classes)
# 定义模型和损失函数
model = nn.Linear(input_size, num_classes)
criterion = nn.CrossEntropyLoss()
# 前向传播计算loss
output = model(input_data)
loss = criterion(output, target_data)
print(loss.item())
batch_size = 128 dataset = Planify_Dataset(Graphs_pyTorch[1:]) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
这段代码是使用torch_geometric库中的DataLoader类来处理mini batch的方式。首先,通过TUDataset类加载数据集,并设置参数root为'/tmp/ENZYMES',name为'ENZYMES',use_node_attr为True。然后,创建一个DataLoader对象loader,将数据集dataset作为参数传入,并设置batch_size为32,shuffle为True。最后,通过for循环遍历loader,每次迭代得到一个batch的数据。
如果你想将batch_size设置为128,可以按照以下方式修改代码:
```python
batch_size = 128
dataset = Planify_Dataset(Graphs_pyTorch[1:])
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
```
这样就将batch_size设置为128,并创建了一个新的DataLoader对象loader。
阅读全文