batch_size=20 dataset = ImageData() dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) device = 'cuda'
时间: 2024-05-21 15:16:48 浏览: 134
这段代码是使用 PyTorch 中的 DataLoader 加载图像数据集,并把它们分成大小为 20 的批次进行训练。其中,`ImageData()` 是你自己定义的数据集类,可能包括图像路径、标签等信息;`shuffle=True` 表示每个 epoch 都对数据集进行洗牌以增加随机性。
`device = 'cuda'` 则是将计算设备设置为 GPU,如果没有可用的 GPU,则可以改为 `device = 'cpu'`,使用 CPU 进行训练。
相关问题
num_epochs = 10 batch_size = 8 dataset = DataSet(np.array(x_train), list(y_train)) train_size = int(len(x_train) * 0.7) test_size = len(y_train) - train_size train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size]) train_loader = Data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) test_loader = Data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, drop_last=True) 这段代码里的训练超参数有哪些
这段代码中的训练超参数包括:
- `num_epochs`:训练的轮数,即遍历整个训练数据集的次数。
- `batch_size`:每个训批次中的样本数量。
- `train_size`:训练数据集的大小,根据总数据集大小和训练集比例计算得出。
- `test_size`:测试数据集的大小,根据总数据集大小和训练集比例计算得出。
其他不是超参数的变量有:
- `dataset`:数据集对象,包含输入特征和对应的标签。
- `train_dataset`:划分后的训练数据集。
- `test_dataset`:划分后的测试数据集。
- `train_loader`:训练数据集的数据加载器,用于将数据分批次加载到模型中进行训练。
- `test_loader`:测试数据集的数据加载器,用于将数据分批次加载到模型中进行测试。
batch_size = 128 dataset = Planify_Dataset(Graphs_pyTorch[1:]) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
这段代码是使用torch_geometric库中的DataLoader类来处理mini batch的方式。首先,通过TUDataset类加载数据集,并设置参数root为'/tmp/ENZYMES',name为'ENZYMES',use_node_attr为True。然后,创建一个DataLoader对象loader,将数据集dataset作为参数传入,并设置batch_size为32,shuffle为True。最后,通过for循环遍历loader,每次迭代得到一个batch的数据。
如果你想将batch_size设置为128,可以按照以下方式修改代码:
```python
batch_size = 128
dataset = Planify_Dataset(Graphs_pyTorch[1:])
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
```
这样就将batch_size设置为128,并创建了一个新的DataLoader对象loader。
阅读全文