//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //_MAP[cur_x][cur_y] = 1; QTimer::singleShot(time, this, [&, i, next_node, cur_x, cur_y, power_consumption]() { // 离开当前位置时将标记设为0 //_MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power_- power_consumption); this->update(); // 在窗口中重绘 }); } },修改代碼:讓agv實現貝塞爾曲綫移動

时间: 2024-01-27 08:06:25 浏览: 101
要让AGV实现贝塞尔曲线移动,可以使用Qt提供的QPainterPath类和QPainter类来实现。 首先,在AGV类中添加一个QPainterPath类型的变量path,用于存储贝塞尔曲线路径。 然后,在生成路径时,不再使用简单的直线连接节点,而是使用QPainterPath的函数来生成贝塞尔曲线路径。例如: ```c++ QPainterPath path; path.moveTo(startPoint); // 设置起点 path.cubicTo(controlPoint1, controlPoint2, endPoint); // 生成贝塞尔曲线路径 ``` 在每次移动时,使用QPainter的drawPath函数绘制贝塞尔曲线路径。例如: ```c++ QPainter painter(this); painter.setPen(QPen(Qt::red, 2)); // 设置画笔颜色和宽度 painter.drawPath(agvs[i].path); // 绘制路径 ``` 同时,在计算时间和电量消耗时,需要使用QPainterPath的length函数来获取路径长度,再根据速度计算移动时间和电量消耗。例如: ```c++ float distance = agvs[i].path.length(); // 获取路径长度 float time = distance / speed * 1000; // 计算移动时间 float power_consumption = distance / 20; // 计算电量消耗 ``` 完整代码如下: ```c++ //在 AGV 类中添加 QPainterPath path; class AGV { private: int currentX; int currentY; float speed; float power; int task_id; public: AGV(int x, int y, float s, float p, int t) : currentX(x), currentY(y), speed(s), power(p), task_id(t) {} int getCurrentX() const { return currentX; } int getCurrentY() const { return currentY; } float getSpeed() const { return speed; } float getPower() const { return power; } int getTaskId() const { return task_id; } void setCurrentX(int x) { currentX = x; } void setCurrentY(int y) { currentY = y; } void setSpeed(float s) { speed = s; } void setPower(float p) { power = p; } void setTaskId(int t) { task_id = t; } QPainterPath path; // 添加 QPainterPath path; }; //修改移动代码 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].getTaskId()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { agvs[i].path.clear(); // 清空路径 continue; } if (agvs[i].path.isEmpty()) { // 如果路径为空,生成贝塞尔曲线路径 QPointF startPoint(agvs[i].getCurrentX(), agvs[i].getCurrentY()); QPointF endPoint(tasks[completed_task_index].x, tasks[completed_task_index].y); QPointF controlPoint1(agvs[i].getCurrentX(), tasks[completed_task_index].y); QPointF controlPoint2(tasks[completed_task_index].x, agvs[i].getCurrentY()); agvs[i].path.moveTo(startPoint); agvs[i].path.cubicTo(controlPoint1, controlPoint2, endPoint); } if (!agvs[i].path.isEmpty()) { // 如果路径不为空,移动AGV float speed = agvs[i].getSpeed(); float distance = agvs[i].path.length(); float time = distance / speed * 1000; float power_consumption = distance / 20; QTimer::singleShot(time, this, [&, i, power_consumption]() { agvs[i].setPower(agvs[i].getPower() - power_consumption); this->update(); }); } } //绘制代码 for (int i = 0; i < agvs.size(); i++) { QPainter painter(this); painter.setPen(QPen(Qt::red, 2)); painter.drawPath(agvs[i].path); } ``` 注意,这只是一个简单的实现,可能需要根据实际情况进行调整。同时,由于贝塞尔曲线路径的生成和绘制都是比较耗时的操作,如果AGV数量过多或者路径比较复杂,可能会影响程序的性能。
阅读全文

相关推荐

void MainWindow::moveAgvs_(){ timer =new QTimer(this); timer->start(100); connect(timer, &QTimer::timeout, this, &MainWindow::moveAgvs);} void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad()){//如果是負載的狀態,則任務的起點到任務的終點 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { agvs[i].setState(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path;} else { //如果是空載的狀態,則行駛到任務的起點 //如果agv已經到達任務起點,變爲負載狀態 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { agvs[i].setLoad(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path;} } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); std::cout << "AGV " << agvs[i].getid() << " current_x: " << agvs[i].getCurrentX() << " current_y: " << agvs[i].getCurrentY() <<std::endl; this->update(); if (next_node->x == agvs[i].getEndX() && next_node->y == agvs[i].getEndY()) { task_to_agv(); } }); } } },增加函數,畫出小車形式路徑

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getState() == false) { if (agvs[i].getLoad()){ //如果是負載的狀態,則任務的起點到任務的終點 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { agvs[i].setState(true); agvs[i].setLoad(false); tasks[i].setCompleted(2); task_to_agv(); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } else { //如果是空載的狀態,則行駛到任務的起點 //如果agv已經到達任務起點,變爲負載狀態 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { agvs[i].setLoad(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; //node_Value[next_node->x][next_node->y] = 10; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); this->update(); // 在窗口中重绘 }); } } } },輸出path的坐標

最新推荐

recommend-type

python小爬虫.zip

python小爬虫
recommend-type

最全的JAVA设计模式,包含原理图解+代码实现.zip

最全的JAVA设计模式,包含原理图解+代码实现
recommend-type

CPPC++_世界上最快的3d贴图转换工具.zip

CPPC++_世界上最快的3d贴图转换工具
recommend-type

【风电】基于TCN-BiGRU的风电功率单变量输入多步预测研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

CPPC++_OSGI for C 通往架构师之路.zip

CPPC++_OSGI for C 通往架构师之路
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。