为这段代码加上注释 def get_split_merge(img): h,w,c = img.shape img_upper = img[0:int(5/12*h),:] img_lower = img[int(1/3*h):,:] img_upper = cv2.resize(img_upper,(img_lower.shape[1],img_lower.shape[0])) new_img = np.hstack((img_upper,img_lower)) return new_img
时间: 2023-10-24 07:04:35 浏览: 82
好的,以下是代码注释:
```
def get_split_merge(img):
# 获取输入图像的高、宽和通道数
h, w, c = img.shape
# 将输入图像分为上下两部分,上部分高度为原图高度的 5/12,下部分高度为原图高度的 2/3
img_upper = img[0:int(5/12*h),:]
img_lower = img[int(1/3*h):,:]
# 将上部分图像缩放到与下部分图像相同的大小
img_upper = cv2.resize(img_upper, (img_lower.shape[1], img_lower.shape[0]))
# 将缩放后的上下两部分图像水平拼接
new_img = np.hstack((img_upper, img_lower))
# 返回拼接后的新图像
return new_img
```
这段代码的功能是将输入的图像分为上下两部分,将上部分缩放到与下部分相同的大小,然后将缩放后的上下两部分水平拼接,最终返回拼接后的新图像。
相关问题
import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()
这段代码使用了PyTorch、OpenCV等库,从模型模块中导入了parsingNet模型,从常用工具模块中导入了merge_config和dist_print等函数。代码还使用了LaneTestDataset数据集和culane_row_anchor、tusimple_row_anchor常量。在if __name__ == "__main__":中,代码设置了torch.backends.cudnn.benchmark为True,合并了配置信息args和cfg,并输出了“start testing...”信息。然后根据配置信息中的backbone选择了不同的通道数,并初始化了一个parsingNet模型。
import cv2 import numpy as np def retinex(img, sigma_list): retinex = np.zeros_like(img) for sigma in sigma_list: img_blur = cv2.GaussianBlur(img, (0, 0), sigma) img_blur = np.where(img_blur == 0, 0.1, img_blur) retinex += np.log10(img) - np.log10(img_blur) retinex = retinex / len(sigma_list) retinex = np.where(retinex < 0, 0, retinex) retinex = np.where(retinex > 1, 1, retinex) return retinex def enhance_image(img): hsi = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, i = cv2.split(hsi) i_enhanced = retinex(i.astype(np.float64), [15, 80, 250]) i_enhanced = (i_enhanced * 255).astype(np.uint8) s_enhanced = cv2.equalizeHist(s) hsi_enhanced = cv2.merge([h, s_enhanced, i_enhanced]) enhanced_img = cv2.cvtColor(hsi_enhanced, cv2.COLOR_HSV2BGR) return enhanced_img img = cv2.imread('low_illumination_1.png') enhanced_img = enhance_image(img) cv2.imshow('Enhanced Image', enhanced_img) cv2.waitKey(0) cv2.destroyAllWindows()
这是一段基于Retinex算法对图像进行增强的Python代码。Retinex算法是一种用于图像增强的经典算法,它可以增强图像的对比度和颜色鲜艳度,同时可以保留图像的细节信息。该算法的基本思想是将图像分解为多个尺度的高斯模糊图像,然后通过计算不同尺度的高斯模糊图像与原始图像之间的差异来获得图像的反射性和色彩性信息。在这段代码中,首先将输入图像转换为HSI颜色空间,然后对亮度通道进行Retinex增强处理,对饱和度通道进行直方图均衡化处理,最后将三个通道重新组合成BGR颜色空间的图像输出。
阅读全文