class Convx2(nn.Module): def __init__(self, c_in, c_out, bn, padding_mode='zeros'): super().__init__() conv_args = dict(padding=1, padding_mode=padding_mode, bias=not bn) self.conv1 = nn.Conv2d(c_in, c_out, 3, **conv_args) self.conv2 = nn.Conv2d(c_out, c_out, 3, **conv_args) if bn: self.bn1 = nn.BatchNorm2d(c_out) self.bn2 = nn.BatchNorm2d(c_out) else: self.bn1 = Identity() self.bn2 = Identity() self.relu = nn.ReLU(inplace=True)是什么意思
时间: 2024-04-19 15:24:48 浏览: 165
这段代码定义了一个名为 `Convx2` 的自定义模块,该模块实现了两个卷积层。
具体的实现如下:
1. `Convx2` 类继承自 `nn.Module`,表示这是一个 PyTorch 模块。
2. 在 `__init__` 方法中,接收输入通道数 `c_in`、输出通道数 `c_out`、是否使用批归一化 `bn`、填充模式 `padding_mode`(默认为 'zeros')作为参数。
3. 定义了一个 `conv_args` 字典,包含卷积层的参数,其中包括填充大小、填充模式和是否使用偏置。
4. 创建两个卷积层 `self.conv1` 和 `self.conv2`,分别是从输入通道数到输出通道数的卷积操作。
5. 根据是否使用批归一化,创建两个批归一化层 `self.bn1` 和 `self.bn2`。如果使用批归一化,则创建 `nn.BatchNorm2d` 层,并且参数 `c_out` 控制了通道数;否则,创建一个自定义的恒等映射层 `Identity`。
6. 创建一个 `nn.ReLU(inplace=True)` 层,用于激活函数的应用。
7. 在 `forward` 方法中,执行模块的前向传播逻辑。首先将输入张量经过卷积操作,并通过 ReLU 激活函数。然后将结果分别输入到两个卷积层,并通过 ReLU 激活函数。最后返回输出张量。
总结来说,这个自定义模块实现了两个卷积层的功能。它可以选择是否使用批归一化,并使用 ReLU 激活函数进行非线性变换。与之前的 `PreactConvx2` 不同的是,这里的批归一化层是应用在输出通道上的。
阅读全文