损失函数用这个loss_function=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=x_train,labels=y_train))
时间: 2023-12-19 22:07:00 浏览: 122
这个损失函数是交叉熵损失函数,常用于多分类问题中。其中,logits是模型的输出,labels是真实标签。tf.nn.softmax_cross_entropy_with_logits()函数会对logits进行softmax计算,然后计算交叉熵损失,最后使用tf.reduce_mean()函数对所有样本的损失求平均值。这个损失函数的作用是衡量模型输出与真实标签之间的差距,目标是使得这个差距最小化。
相关问题
import tensorflow as tfdef cross_entropy_loss(y_true, y_pred): # 计算交叉熵损失 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred) return tf.reduce_mean(cross_entropy)def boundary_loss(y_true, y_pred): # 计算边界损失 boundary_filter = tf.constant([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=tf.float32) y_true_boundary = tf.nn.conv2d(y_true, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') y_pred_boundary = tf.nn.conv2d(y_pred, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') boundary_loss = tf.reduce_mean(tf.square(y_true_boundary - y_pred_boundary)) return boundary_lossdef total_loss(y_true, y_pred): # 总损失函数 = 交叉熵损失 + 边界损失 return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)# 构建模型model = ...# 编译模型model.compile(optimizer='adam', loss=total_loss, metrics=['accuracy'])
可以将这部分代码转化为PyTorch,转化后的代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
def cross_entropy_loss(y_true, y_pred):
# 计算交叉熵损失
cross_entropy = nn.CrossEntropyLoss()(y_pred, y_true)
return cross_entropy
def boundary_loss(y_true, y_pred):
# 计算边界损失
boundary_filter = torch.tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=torch.float32)
boundary_filter = boundary_filter.view(1, 1, 3, 3)
y_true_boundary = F.conv2d(y_true, boundary_filter, padding=1)
y_pred_boundary = F.conv2d(y_pred, boundary_filter, padding=1)
boundary_loss = F.mse_loss(y_true_boundary, y_pred_boundary)
return boundary_loss
def total_loss(y_true, y_pred):
# 总损失函数 = 交叉熵损失 + 边界损失
return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)
# 构建模型
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32*8*8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32*8*8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model()
# 编译模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = total_loss
metrics = ['accuracy']
# 训练 def train_crack_captcha_cnn(): output = crack_captcha_cnn() # loss #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True}) print(step, loss_) # 每100 step计算一次准确率 if step % 100 == 0 and step != 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False}) print(f"第{step}步,训练准确率为:{acc:.4f}") # 如果准确率大60%,保存模型,完成训练 if acc > 0.6: saver.save(sess, "crack_capcha.model", global_step=step) break step += 1 怎么没有输出结果
这段代码是一个用 CNN 模型来破解验证码的训练函数。其中,loss 函数使用的是 sigmoid_cross_entropy_with_logits,这是因为验证码每个字符只有一个正确的标签,而不是像分类问题那样多个标签,所以使用 sigmoid 函数更为合适。softmax 函数主要应用在多分类问题中。在代码中,optimizer 使用的是 Adam 优化器,learning_rate 初始值为 0.002,且会随着训练的进行而逐渐衰减。在训练过程中,每 100 步计算一次准确率,并在准确率大于 0.6 时保存模型并结束训练。至于为什么没有输出结果,可能是因为你没有调用 train_crack_captcha_cnn() 函数。
阅读全文