若X = data.loc[:, data.columns != 'day_28_flg'] X_imputed = imputer.fit_transform(X),我该怎么改X_imputed = imputer.fit_transform(X) X_imputed = pd.get_dummies(X_imputed)

时间: 2024-02-24 13:59:28 浏览: 146
如果你的特征矩阵`X`中包含类别型特征,那么你在对`X`进行缺失值填充后,需要对类别型特征进行编码,才能使用特征选择方法。因此,你需要修改代码如下: ```python X = data.loc[:, data.columns != 'day_28_flg'] X_imputed = imputer.fit_transform(X) X_imputed = pd.DataFrame(X_imputed, columns=X.columns) # 将numpy数组转换为DataFrame,并设置列名 X_imputed = pd.get_dummies(X_imputed) # 对所有特征进行独热编码 selector.fit(X_imputed, y) X_selected = X_imputed.loc[:, selector.get_support()] # 获取被选中的特征 ``` 其中,`columns=X.columns`是用来设置DataFrame的列名,保证特征选择后的DataFrame列名与原始的DataFrame列名一致。`X_imputed = pd.get_dummies(X_imputed)`是对所有特征进行独热编码。`X_selected = X_imputed.loc[:, selector.get_support()]`是获取被选中的特征。需要注意的是,`selector.get_support()`返回的是一个布尔型的数组,用来表示每个特征是否被选中,因此可以直接用来对DataFrame进行列索引。
相关问题

解释一下每行代码 ori_data = pd.read_csv('F:/patient.csv') ori_data.loc[:, 'id'] = ori_data.loc[:, 'patient_id'].apply(lambda x: x[:7]) index = set(ori_data['id']) column = list(ori_data.columns) del column[0] del column[-1] average = pd.DataFrame(index=index, columns=column) for k in column: result = ori_data.groupby('id')[k].mean() average.loc[:, k] = result column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']],

Sure, 这段代码的作用是对'F:/patient.csv'中的数据进行处理,提取出自变量和目标变量。下面分行解释每段代码的作用: 1. `ori_data = pd.read_csv('F:/patient.csv')`:从磁盘中读取'F:/patient.csv'文件中的数据,存储为一个名为ori_data的DataFrame。 2. `ori_data.loc[:, 'id'] = ori_data.loc[:, 'patient_id'].apply(lambda x: x[:7])`:在原始数据DataFrame中增加一列'id',其中每个元素为'patient_id'的前7个字符。这一步目的是为了将所有ID转换为统一的格式,方便后面的计算。 3. `index = set(ori_data['id'])`:获取所有唯一的id值,存储为一个集合。 4. `column = list(ori_data.columns)`:获取所有列名,存储为一个列表。 5. `del column[0]`:删除第一列'patient_id',因为已经用'id'列代替。 6. `del column[-1]`:删除最后一列,即'EVENTdeath',因为这一列是目标变量。 7. `average = pd.DataFrame(index=index, columns=column)`:创建一个名为'average'的DataFrame,其中行是每个病人的ID,列是每个特征的名称。 8. `for k in column: result = ori_data.groupby('id')[k].mean() average.loc[:, k] = result`:对于每一列特征,计算每个病人的平均值,并将这些平均值存储在'average' DataFrame中。 9. `column = list(average.columns)`:获取'average' DataFrame中所有列的名称,存储为一个列表。 10. `data = average.loc[:, column[0]:column[-3]]`:从'average' DataFrame中提取自变量,即所有特征列,除了最后两列'TIMEsurvival'和'EVENTdeath'。 11. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从'average' DataFrame中提取目标变量,即最后两列'TIMEsurvival'和'EVENTdeath'。

逐行解释这段代码 column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']] for i in range(1, 101): X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i) # feature = Spearman(X_train, 0.85) #spearman第一行 # feature = list(feature['feature']) #spearman第二行 # X_train = X_train.loc[:, feature] #spearman第三行 train_index = X_train.index train_column = X_train.columns zscore_scaler = preprocessing.StandardScaler() X_train = zscore_scaler.fit_transform(X_train) X_train = pd.DataFrame(X_train, index=train_index, columns=train_column) # X_test = X_test.loc[:, feature] #spearman第四行 test_index = X_test.index test_column = X_test.columns X_test = zscore_scaler.transform(X_test) X_test = pd.DataFrame(X_test, index=test_index, columns=test_column) train = pd.concat([X_train, y_train], axis=1)

这段代码主要是对数据进行预处理和分割,具体解释如下: 1. `column = list(average.columns)`:将 `average` 数据的列名转换成列表形式,并赋值给 `column`。 2. `data = average.loc[:, column[0]:column[-3]]`:从 `average` 数据中选取所有行和 `column[0]` 到 `column[-3]` 列的数据,赋值给 `data`。这里的 `column[-3]` 表示从最后一列开始往前数第三列。 3. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从 `average` 数据中选取所有行和 `TIMEsurvival'` 以及 `'EVENTdeath'` 两列的数据,赋值给 `target`。这里的 `TIMEsurvival` 表示存活时间,`EVENTdeath` 表示是否死亡。 4. `for i in range(1, 101):`:循环 100 次,每次循环都进行一次数据分割和预处理的操作。 5. `X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i)`:使用 `train_test_split` 方法将 `data` 和 `target` 数据集分别划分为训练集和测试集,其中测试集占 30%,`random_state=i` 表示每次随机划分的结果都是相同的,以保证实验结果可重复。 6. `train_index = X_train.index` 和 `train_column = X_train.columns`:将训练集中的行和列名分别赋值给 `train_index` 和 `train_column` 变量。 7. `zscore_scaler = preprocessing.StandardScaler()`:实例化 `StandardScaler` 类,即进行 Z-score 标准化的对象。 8. `X_train = zscore_scaler.fit_transform(X_train)`:对训练集进行 Z-score 标准化处理。 9. `X_train = pd.DataFrame(X_train, index=train_index, columns=train_column)`:将标准化后的训练集数据转换为 DataFrame 格式,并将行和列名分别设置为 `train_index` 和 `train_column`。 10. `test_index = X_test.index` 和 `test_column = X_test.columns`:将测试集中的行和列名分别赋值给 `test_index` 和 `test_column` 变量。 11. `X_test = zscore_scaler.transform(X_test)`:对测试集进行 Z-score 标准化处理。 12. `X_test = pd.DataFrame(X_test, index=test_index, columns=test_column)`:将标准化后的测试集数据转换为 DataFrame 格式,并将行和列名分别设置为 `test_index` 和 `test_column`。 13. `train = pd.concat([X_train, y_train], axis=1)`:将标准化后的训练集数据和目标变量 `y_train` 沿列方向合并,形成新的训练集 `train`。
阅读全文

相关推荐

def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return temp data.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5 data.loc[(data['Outcome'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5 data.loc[(data['Outcome'] == 0 ) & (data['Glucose'].isnull()), 'Glucose'] = 107 data.loc[(data['Outcome'] == 1 ) & (data['Glucose'].isnull()), 'Glucose'] = 1 data.loc[(data['Outcome'] == 0 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27 data.loc[(data['Outcome'] == 1 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32 data.loc[(data['Outcome'] == 0 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70 data.loc[(data['Outcome'] == 1 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5 data.loc[(data['Outcome'] == 0 ) & (data['BMI'].isnull()), 'BMI'] = 30.1 data.loc[(data['Outcome'] == 1 ) & (data['BMI'].isnull()), 'BMI'] = 34.3 target_col = ["Outcome"] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols ] #numerical columns num_cols = [x for x in data.columns if x not in cat_cols + target_col] #Binary columns with 2 values bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() #Columns more than 2 values multi_cols = [i for i in cat_cols if i not in bin_cols] #Label encoding Binary columns le = LabelEncoder() for i in bin_cols : data[i] = le.fit_transform(data[i]) #Duplicating columns for multi value columns data = pd.get_dummies(data = data,columns = multi_cols ) #Scaling Numerical columns std = StandardScaler() scaled = std.fit_transform(data[num_cols]) scaled = pd.DataFrame(scaled,columns=num_cols) #dropping original values merging scaled values for numerical columns df_data_og = data.copy() data = data.drop(columns = num_cols,axis = 1) data = data.merge(scaled,left_index=True,right_index=True,how = "left") # Def X and Y X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)

function median_target(var) { temp = data[data[var].notnull()]; temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index(); return temp; } data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5; data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5; data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107; data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1; data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27; data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32; data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70; data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5; data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1; data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3; target_col = ["Outcome"]; cat_cols = data.nunique()[data.nunique() < 12].keys().tolist(); cat_cols = [x for x in cat_cols]; num_cols = [x for x in data.columns if x not in cat_cols + target_col]; bin_cols = data.nunique()[data.nunique() == 2].keys().tolist(); multi_cols = [i for i in cat_cols if i in bin_cols]; le = LabelEncoder(); for i in bin_cols: data[i] = le.fit_transform(data[i]); data = pd.get_dummies(data=data, columns=multi_cols); std = StandardScaler(); scaled = std.fit_transform(data[num_cols]); scaled = pd.DataFrame(scaled, columns=num_cols); df_data_og = data.copy(); data = data.drop(columns=num_cols, axis=1); data = data.merge(scaled, left_index=True, right_index=True, how='left'); X = data.drop('Outcome', axis=1); y = data['Outcome']; X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1); y_train = to_categorical(y_train); y_test = to_categorical(y_test);将这段代码添加注释

将下列代码变为伪代码def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return temp data.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5 data.loc[(data['Result'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5 data.loc[(data['Result'] == 0 ) & (data['Glucose'].isnull()), 'Glucose'] = 107 data.loc[(data['Result'] == 1 ) & (data['Glucose'].isnull()), 'Glucose'] = 1 data.loc[(data['Result'] == 0 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27 data.loc[(data['Result'] == 1 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32 data.loc[(data['Result'] == 0 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70 data.loc[(data['Result'] == 1 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5 data.loc[(data['Result'] == 0 ) & (data['BMI'].isnull()), 'BMI'] = 30.1 data.loc[(data['Result'] == 1 ) & (data['BMI'].isnull()), 'BMI'] = 34.3 target_col = [“Outcome”] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols ] #numerical列 num_cols = [x for x in data.columns if x 不在 cat_cols + target_col] #Binary列有 2 个值 bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() #Columns 2 个以上的值 multi_cols = [i 表示 i in cat_cols if i in bin_cols] #Label编码二进制列 le = LabelEncoder() for i in bin_cols : data[i] = le.fit_transform(data[i]) #Duplicating列用于多值列 data = pd.get_dummies(data = data,columns = multi_cols ) #Scaling 数字列 std = StandardScaler() 缩放 = std.fit_transform(数据[num_cols]) 缩放 = pd。数据帧(缩放,列=num_cols) #dropping原始值合并数字列的缩放值 df_data_og = 数据.copy() 数据 = 数据.drop(列 = num_cols,轴 = 1) 数据 = 数据.合并(缩放,left_index=真,right_index=真,如何 = “左”) # 定义 X 和 Y X = 数据.drop('结果', 轴=1) y = 数据['结果'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)

import pandas as pd import tkinter as tk from tkinter import filedialog from sklearn.preprocessing import StandardScaler # 定义全局变量 file_path = "" def import_csv_data(): global file_path file_path = filedialog.askopenfilename() # 读取CSV文件并显示在Text控件上 data = pd.read_csv(file_path) # 获取前5行数据 top_5 = data.head() # 将前5行数据插入到Text控件 txt_data.insert(tk.END, top_5) # 处理缺失值 def handle_missing_values(): global file_path # 修改2:使用全局变量 # 读取CSV文件 data = pd.read_csv(file_path) # 处理缺失值 data.fillna(0, inplace=True) # 显示前10行数据 text_output.insert(tk.END, "处理缺失值成功,前10行数据如下:\n") text_output.insert(tk.END, str(data.head(10))) # 标准化数值型数据 def normalize_numeric_data(): global file_path # 读取CSV文件 data = pd.read_csv(file_path) # 提取数值型数据 numeric_data = data.select_dtypes(include=['float64', 'int64']) # 标准化数据 scaler = StandardScaler() normalized_data = scaler.fit_transform(numeric_data) # 将处理后的数据写回原数据框 data.loc[:, numeric_data.columns] = normalized_data # 显示前10行数据 text_output.insert(tk.END, "标准化数值型数据成功,前10行数据如下:\n") text_output.insert(tk.END, str(data.head(10))) 这段代码后的def encode_categorical_data(): # 读取CSV文件 data = pd.read_csv("file.csv") # 提取类别型数据 categorical_data = data.select_dtypes(include=['object']) # 编码数据 encoder = LabelEncoder() encoded_data = categorical_data.apply(encoder.fit_transform) # 将处理后的数据写回原数据框 data.loc[:, categorical_data.columns] = encoded_data # 显示前10行数据 text_output.insert(tk.END, "编码类别型数据成功,前10行数据如下:\n") text_output.insert(tk.END, str(data.head(10)))这段代码怎么改能跑通

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) y.shape=(185,1) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=10) SC=StandardScaler() X_train=SC.fit_transform(X_train) X_test=SC.fit_transform(X_test) y_train=SC.fit_transform(y_train) y_test=SC.fit_transform(y_test) print("X_train.shape:", X_train.shape) print("X_test.shape:", X_test.shape) print("y_train.shape:", y_train.shape) print("y_test.shape:", y_test.shape) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(8, input_dim=X_train.shape[1], activation='relu')) model.add(Dense(12, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=2) score = model.evaluate(X_test, y_test, verbose=2) return score # 定义变量的下限和上限 lb = [5, 5] ub = [30, 30] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1]) # 绘制预测值和真实值对比图 model = nn_model(X) model.fit(X_train, y_train, epochs=60, verbose=0) y_pred = model.predict(X_test) y_true = SC.inverse_transform(y_test) y_pred=SC.inverse_transform(y_pred) plt.figure() plt.plot(y_true,"bo-",label = '真实值') plt.plot(y_pred,"ro-", label = '预测值') plt.title('神经网络预测展示') plt.xlabel('序号') plt.ylabel('产量') plt.legend(loc='upper right') plt.show() # 绘制损失函数曲线图 model = nn_model(X) history = model.fit(X_train, y_train, epochs=60, validation_data=(X_test, y_test), verbose=2) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show()

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder,LabelEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV df = pd.read_csv('mafs(1).csv') df.head() man = df['Gender']=='M' woman = df['Gender']=='F' data = pd.DataFrame() data['couple'] = df.Couple.unique() data['location'] = df.Location.values[::2] data['man_name'] = df.Name[man].values data['woman_name'] = df.Name[woman].values data['man_occupation'] = df.Occupation[man].values data['woman_occupaiton'] = df.Occupation[woman].values data['man_age'] = df.Age[man].values data['woman_age'] = df.Age[woman].values data['man_decision'] = df.Decision[man].values data['woman_decision']=df.Decision[woman].values data['status'] = df.Status.values[::2] data.head() data.to_csv('./data.csv') data = pd.read_csv('./data.csv',index_col=0) data.head() enc = OneHotEncoder() matrix = enc.fit_transform(data['location'].values.reshape(-1,1)).toarray() feature_labels = enc.categories_ loc = pd.DataFrame(data=matrix,columns=feature_labels) data_new=data[['man_age','woman_age','man_decision','woman_decision','status']] data_new.head() lec=LabelEncoder() for label in ['man_decision','woman_decision','status']: data_new[label] = lec.fit_transform(data_new[label]) data_final = pd.concat([loc,data_new],axis=1) data_final.head() X = data_final.drop(columns=['status']) Y = data_final.status X_train,X_test,Y_train,Y_test=train_test_split(X,Y,train_size=0.7,shuffle=True) rfc = RandomForestClassifier(n_estimators=20,max_depth=2) param_grid = [ {'n_estimators': [3, 10, 30,60,100], 'max_features': [2, 4, 6, 8], 'max_depth':[2,4,6,8,10]}, ] grid_search = GridSearchCV(rfc, param_grid, cv=9) grid_search.fit(X, Y) print(grid_search.best_score_) #最好的参数 print(grid_search.best_params_)

最新推荐

recommend-type

白色大气风格的旅游酒店企业网站模板.zip

白色大气风格的旅游酒店企业网站模板.zip
recommend-type

python实现用户注册

python实现用户注册
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph