解释这段代码img = img.transpose(2, 0, 1) img = np.ascontiguousarray(img) return img
时间: 2023-10-24 13:07:53 浏览: 176
这段代码用于对图像进行处理。首先,它使用`transpose`函数将图像的维度重新排列为(2, 0, 1),这意味着图像的通道维度将变为第一个维度,高度维度变为第二个维度,宽度维度变为第三个维度。这种重新排列是为了适应一些机器学习模型的输入要求。
接下来,代码使用`np.ascontiguousarray`函数将图像转换为连续的内存布局。这是因为一些库或模型要求输入数据在内存中是连续的,而不是间隔存储的。
最后,函数返回处理后的图像。
相关问题
def image_processing(img,device): img = cv2.resize(img, (168,48)) img = np.reshape(img, (48, 168, 3)) # normalize img = img.astype(np.float32) img = (img / 255. - mean_value) / std_value img = img.transpose([2, 0, 1]) img = torch.from_numpy(img) img = img.to(device) img = img.view(1, *img.size()) return img
这段代码是图像处理的函数,它实现的功能是将原始图像进行大小重置、归一化处理和转换成 PyTorch 的张量格式。具体来说,该函数实现了以下几个步骤:
1. 使用 OpenCV 库中的 cv2.resize() 函数将原始图像重置为大小为 (168, 48) 的图像。
2. 将图像的像素值从 [0, 255] 范围归一化到 [-1, 1] 范围,以便于神经网络的处理。这里使用了预先计算好的均值和标准差值进行归一化,mean_value 和 std_value 分别代表均值和标准差。
3. 将图像的维度顺序从 (48, 168, 3) 转换为 (3, 48, 168) 的格式,以符合 PyTorch 的输入格式要求。
4. 将图像转换成 PyTorch 的张量格式,并将其移动到指定的设备上(例如 CPU 或 GPU)。
5. 将图像的维度扩展一维,以符合神经网络的输入要求。
最终,该函数返回处理后的图像张量。
解释代码:def mask_random(img): # 生成随机掩膜 mask1 = np.ones((image_size, image_size, 3)) h = 50 w = 50 x1 = np.random.randint(image_size - h) y1 = np.random.randint(image_size - w) mask1[x1:x1 + h, y1:y1 + w:] = 0 # 遮罩区域像素值赋0 mask1 = mask1.transpose(2, 0, 1) img_masked1 = img * torch.from_numpy(mask1).float() return img_masked1, mask1
def mask_random(img) 的代码解释:
这是一个名为 mask_random 的 Python 函数,它接受一个图片参数 img。
这个函数的作用是对输入的图片进行随机遮挡。
在函数内部,它首先获取图片的宽和高,然后使用一个随机数生成器生成一个矩形区域的左上角和右下角坐标。
接着,函数会将这个矩形区域内的像素值设为 0,即将其遮挡。
最终,函数返回被遮挡后的图片(在原图上进行了修改)。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)