def detect(self, srcimg): img, newh, neww, top, left = self.resize_image(srcimg) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0) outs = self.net.run(None, {self.net.get_inputs()[0].name: blob})[0].squeeze(axis=0) box_index,boxes = self.postprocess(srcimg, outs, (newh, neww, top, left)) return box_index,boxes 解释代码
时间: 2024-03-22 08:40:33 浏览: 114
这段代码是一个对象的方法,其中包含了目标检测的一些过程。
首先,输入的原始图像被调用对象的 `resize_image` 方法进行缩放,并返回了缩放后的图像、新的高度和宽度,以及在新图像中的顶部和左侧位置。
然后,图像被转换成 RGB 格式,并将像素值归一化到 0 到 1 之间。
接下来,使用 `np.transpose` 方法将图像的维度从 (H, W, C) 改变为 (C, H, W),并使用 `np.expand_dims` 方法将其扩展为 4 维,以适应神经网络输入的要求。
然后,使用 `self.net.run` 方法将图像通过神经网络进行前向传播,获得输出,即目标检测的结果。
最后,调用对象的 `postprocess` 方法对目标检测结果进行后处理,包括筛选出置信度高的目标框和对其进行位置还原,并返回目标框的索引和位置信息。最终,这些信息被返回给调用者。
相关问题
import torchimport cv2import numpy as npfrom models.experimental import attempt_loadfrom utils.general import non_max_suppressionclass YoloV5Detector: def __init__(self, model_path, conf_thresh=0.25, iou_thresh=0.45): self.conf_thresh = conf_thresh self.iou_thresh = iou_thresh self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = attempt_load(model_path, map_location=self.device) self.model.eval() def detect(self, image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device).float() / 255.0 # Run inference with torch.no_grad(): results = self.model(img, size=img.shape[-2:]) results = non_max_suppression(results, conf_thres=self.conf_thresh, iou_thres=self.iou_thresh) return results
这是一个使用 YOLOv5 模型进行目标检测的 Python 代码。该类 YoloV5Detector 包含了模型加载、图片预处理和推理的功能。具体来说,会使用 OpenCV 库读取图片,将其转换为 RGB 格式,然后转换为 PyTorch 的 Tensor 格式,并将其送入 YOLOv5 模型中进行推理。最后,使用非极大值抑制算法(NMS)筛选出检测出来的物体,并返回结果。其中,conf_thresh 和 iou_thresh 分别表示置信度和重叠阈值,可以通过调整这两个参数来控制检测结果的准确率和召回率。
import cv2 import numpy as np import pyautogui import tkinter as tk from PIL import ImageTk, Image class WindowDetector: def __init__(self, template_path): self.template = cv2.imread(template_path, 0) self.w, self.h = self.template.shape[::-1] def detect(self): screenshot = pyautogui.screenshot() screenshot = np.array(screenshot) screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY) res = cv2.matchTemplate(screenshot, self.template, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(res >= threshold) for pt in zip(*loc[::-1]): cv2.rectangle(screenshot, pt, (pt[0] + self.w, pt[1] + self.h), (0, 0, 255), 2) return screenshot class App: def __init__(self, template_path): self.window_detector = WindowDetector(template_path) self.root = tk.Tk() self.root.title("Window Detector") self.root.geometry("800x600") self.canvas = tk.Canvas(self.root, width=800, height=600) self.canvas.pack() self.template = ImageTk.PhotoImage(Image.open(template_path)) tk.Button(self.root, text="Detect", command=self.detect_window).pack() tk.Label(self.root, image=self.template).pack() self.root.mainloop() def detect_window(self): screenshot = self.window_detector.detect() img = ImageTk.PhotoImage(Image.fromarray(screenshot)) self.canvas.create_image(0, 0, anchor=tk.NW, image=img) self.root.update_idletasks() if __name__ == "__main__": app = App("template.png")
这段代码是用来检测屏幕上是否存在一个特定的窗口,它首先读取一个模板图像,然后使用pyautogui库截取屏幕图像。接着,它使用OpenCV中的模板匹配算法来在屏幕截图中寻找模板图像的匹配位置。如果匹配程度超过了设定的阈值,就会在屏幕截图中标出匹配的位置。最后,它使用tkinter库创建了一个GUI窗口,其中包含一个按钮和一个标签,用户可以点击按钮来检测屏幕上是否存在指定的窗口,并在标签中显示检测结果。
阅读全文