粒子滤波四种基本重采样代码
时间: 2023-11-12 10:03:16 浏览: 179
粒子滤波的重采样方法:四种重采样方法(Multinomial、Residual、Stratified和Systematic)的实现-matlab开发
5星 · 资源好评率100%
粒子滤波中的重采样是非常重要的一步,可以使得粒子在一定程度上避免漂移。以下是四种基本的重采样代码:
1. Systematic Resampling(系统重采样)
```python
def systematic_resampling(particles, weights):
N = len(weights)
positions = (np.arange(N) + np.random.uniform()) / N
indexes = np.zeros(N, 'i')
cumulative_sum = np.cumsum(weights)
i, j = 0, 0
while i < N and j < N:
if positions[i] < cumulative_sum[j]:
indexes[i] = j
i += 1
else:
j += 1
return particles[indexes]
```
2. Multinomial Resampling(多项式重采样)
```python
def multinomial_resampling(particles, weights):
indexes = np.zeros(len(weights), 'i')
cumulative_sum = np.cumsum(weights)
cumulative_sum[-1] = 1. # avoid round-off errors
for i in range(len(weights)):
indexes[i] = np.searchsorted(cumulative_sum, np.random.uniform())
return particles[indexes]
```
3. Residual Resampling(残余重采样)
```python
def residual_resampling(particles, weights):
N = len(weights)
indexes = np.zeros(N, 'i')
# determine integer parts for each weight
num_copies = (N * weights).astype(int)
k = 0
for i in range(N):
for _ in range(num_copies[i]):
indexes[k] = i
k += 1
# use multinomial resample on the residual to fill up the rest.
residual = weights - num_copies # get fractional part
residual /= sum(residual) # normalize
cumulative_sum = np.cumsum(residual)
cumulative_sum[-1] = 1. # avoid round-off errors
for i in range(k, N):
indexes[i] = np.searchsorted(cumulative_sum, np.random.uniform())
return particles[indexes]
```
4. Stratified Resampling(分层重采样)
```python
def stratified_resampling(particles, weights):
N = len(weights)
# make N subdivisions, and chose a random position within each one
positions = (np.random.uniform(0, 1, N) + range(N)) / N
indexes = np.zeros(N, 'i')
cumulative_sum = np.cumsum(weights)
i, j = 0, 0
while i < N and j < N:
if positions[i] < cumulative_sum[j]:
indexes[i] = j
i += 1
else:
j += 1
return particles[indexes]
```
阅读全文