已知稀疏矩阵A和B,编程实现基于三元组顺序表实现A+B的运算,编写十个python程序
时间: 2024-02-20 20:59:19 浏览: 76
程序1:定义三元组顺序表的数据结构
```
class Triple:
def __init__(self, row, col, value):
self.row = row
self.col = col
self.value = value
```
程序2:定义稀疏矩阵A和B
```
A = [Triple(0, 0, 1), Triple(0, 1, 2), Triple(0, 3, 4), Triple(1, 0, 3), Triple(2, 2, 5)]
B = [Triple(0, 1, 1), Triple(1, 0, 2), Triple(2, 2, 3)]
```
程序3:定义稀疏矩阵的加法运算
```
def matrix_addition(A, B):
result = []
i = 0
j = 0
while i < len(A) and j < len(B):
if A[i].row < B[j].row or (A[i].row == B[j].row and A[i].col < B[j].col):
result.append(A[i])
i += 1
elif A[i].row == B[j].row and A[i].col == B[j].col:
if A[i].value + B[j].value != 0:
result.append(Triple(A[i].row, A[i].col, A[i].value + B[j].value))
i += 1
j += 1
else:
result.append(B[j])
j += 1
while i < len(A):
result.append(A[i])
i += 1
while j < len(B):
result.append(B[j])
j += 1
return result
```
程序4:调用加法运算,输出结果
```
result = matrix_addition(A, B)
for triple in result:
print(triple.row, triple.col, triple.value)
```
程序5:定义稀疏矩阵A和B的转置矩阵
```
def transpose(matrix):
result = []
col_counts = [0] * len(matrix[0])
for triple in matrix:
col_counts[triple.col] += 1
col_starts = [0]
for i in range(len(col_counts) - 1):
col_starts.append(col_starts[-1] + col_counts[i])
for triple in matrix:
result.append(Triple(triple.col, triple.row, triple.value))
col_starts[triple.col] += 1
return result
```
程序6:调用转置矩阵,输出结果
```
AT = transpose(A)
for triple in AT:
print(triple.row, triple.col, triple.value)
BT = transpose(B)
for triple in BT:
print(triple.row, triple.col, triple.value)
```
程序7:定义稀疏矩阵A和B的乘法运算
```
def matrix_multiplication(A, B):
BT = transpose(B)
result = []
for i in range(len(A)):
row = [0] * len(BT)
for j in range(len(BT)):
k = 0
l = 0
while k < len(A) and l < len(BT):
if A[k].row < i or BT[l].row < j:
k += 1
elif A[k].row > i or BT[l].row > j:
l += 1
else:
if A[k].col < BT[l].col:
k += 1
elif A[k].col > BT[l].col:
l += 1
else:
row[j] += A[k].value * BT[l].value
k += 1
l += 1
for j in range(len(row)):
if row[j] != 0:
result.append(Triple(i, j, row[j]))
return result
```
程序8:调用乘法运算,输出结果
```
result = matrix_multiplication(A, B)
for triple in result:
print(triple.row, triple.col, triple.value)
```
程序9:定义稀疏矩阵A的转置矩阵的乘法运算
```
def transpose_matrix_multiplication(A, B):
AT = transpose(A)
result = []
for i in range(len(AT)):
row = [0] * len(B)
for j in range(len(B)):
k = 0
l = 0
while k < len(AT) and l < len(B):
if AT[k].row < i or B[l].row < j:
k += 1
elif AT[k].row > i or B[l].row > j:
l += 1
else:
if AT[k].col < B[l].col:
k += 1
elif AT[k].col > B[l].col:
l += 1
else:
row[j] += AT[k].value * B[l].value
k += 1
l += 1
for j in range(len(row)):
if row[j] != 0:
result.append(Triple(i, j, row[j]))
return result
```
程序10:调用转置矩阵的乘法运算,输出结果
```
result = transpose_matrix_multiplication(A, B)
for triple in result:
print(triple.row, triple.col, triple.value)
```
阅读全文