with open('lfw_dataset.pkl', 'wb') as f: pickle.dump(dataset, f),怎么打开
时间: 2023-07-15 11:12:23 浏览: 117
要打开这个文件,你可以使用以下代码:
```
import pickle
with open('lfw_dataset.pkl', 'rb') as f:
dataset = pickle.load(f)
```
这将使用 pickle 模块中的 load 函数将文件中的数据加载到变量 dataset 中。请确保在打开文件时使用正确的模式('rb' 用于读取二进制文件)。
相关问题
faces_data_bunch = people = fetch_lfw_people(data_home = "C:\\Users\\Administrator\\Desktop\\face",download_if_missing=False,min_faces_per_person=70, resize=0.4) print(faces_data_bunch.target_names) print(faces_data_bunch.data.shape) print(faces_data_bunch.images.shape) print(faces_data_bunch.target.shape) # 输出同一个人的人脸 n = 5 tt = 0 t = faces_data_bunch.target[0] print("输出的人脸都属于:",faces_data_bunch.target_names[faces_data_bunch.target[0]]) f = plt.figure() for i in range(faces_data_bunch.target.shape[0]): if faces_data_bunch.target[i] == t: f.add_subplot(1, n, tt + 1) plt.imshow(faces_data_bunch.images[i]) tt = tt+1 if(tt>=n): break plt.show(block=True)
这段代码是用于获取人脸数据集的,其中数据存放在指定路径下的 "C:\\Users\\Administrator\\Desktop\\face" 文件夹中。数据集只包含每个人脸出现次数超过 70 次的人,并且将图片缩小到原大小的 0.4 倍。输出结果包含该数据集的人名、数据数量、图片数量和目标数量等信息。
import cv2 from skimage.feature import hog # 加载LFW数据集 from sklearn.datasets import fetch_lfw_people lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # 将数据集划分为训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(lfw_people.images, lfw_people.target, test_size=0.2, random_state=42) # 图像预处理和特征提取 from skimage import exposure import numpy as np train_features = [] for i in range(X_train.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_train[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 train_features.append(hog_features) train_features = np.array(train_features) train_labels = y_train test_features = [] for i in range(X_test.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_test[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 test_features.append(hog_features) test_features = np.array(test_features) test_labels = y_test # 训练模型 from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_features, train_labels) # 对测试集中的人脸图像进行预测 predict_labels = gnb.predict(test_features) # 计算预测准确率 from sklearn.metrics import accuracy_score accuracy = accuracy_score(test_labels, predict_labels) print('Accuracy:', accuracy)
这段代码是在导入Python中用于图像处理和计算机视觉的两个库:cv2和skimage.feature。从skimage.feature导入了hog函数,是用于计算图像的HOG(方向梯度直方图)特征的函数。
阅读全文