spark读取kafka数据的Scala代码
时间: 2023-03-14 18:29:50 浏览: 120
答:可以使用Spark Streaming API将Kafka中的数据读取到Scala程序中,具体代码如下:val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "localhost:9092", // Kafka服务器地址 "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "use_a_separate_group_id_for_each_stream", "auto.offset.reset" -> "latest", "enable.auto.commit" -> (false: java.lang.Boolean) ) val topics = Array("topicA", "topicB") val stream = KafkaUtils.createDirectStream[String, String]( streamingContext, PreferConsistent, Subscribe[String, String](topics, kafkaParams) )
相关问题
sparkStreaming获取kafka数据(java版本)
以下是使用Java编写的Spark Streaming获取Kafka数据的示例代码:
```java
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
public class KafkaSparkStreamingExample {
public static void main(String[] args) throws InterruptedException {
// Kafka相关配置
String brokers = "localhost:9092";
String groupId = "test-group";
String topics = "test-topic";
// Spark相关配置
SparkConf conf = new SparkConf().setAppName("KafkaSparkStreamingExample").setMaster("local[*]");
JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(5));
// Kafka参数
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", brokers);
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", groupId);
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
// 订阅Kafka主题
Collection<String> topicsSet = Arrays.asList(topics.split(","));
JavaInputDStream<Tuple2<String, String>> messages = KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topicsSet, kafkaParams)
);
// 处理消息
JavaPairDStream<String, String> pairs = messages.mapToPair(record -> new Tuple2<>(record.key(), record.value()));
pairs.foreachRDD(rdd -> rdd.foreach(record -> System.out.println(record._2)));
// 启动流处理
streamingContext.start();
streamingContext.awaitTermination();
}
}
```
在这个示例代码中,我们使用了`KafkaUtils.createDirectStream()`方法订阅了一个Kafka主题,然后使用`mapToPair()`方法将消息转换为键值对形式的RDD,最后使用`foreachRDD()`方法遍历RDD并打印出每条记录的值。
spark读取oracle写入kafka,sparkStreaming读取kafka写入hive表
可以按照以下步骤实现:
1. 首先,需要在Spark中使用JDBC连接Oracle数据库,读取数据。可以使用以下代码:
```scala
val jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL"
val jdbcUsername = "username"
val jdbcPassword = "password"
val jdbcDriverClass = "oracle.jdbc.driver.OracleDriver"
val connectionProperties = new Properties()
connectionProperties.put("user", jdbcUsername)
connectionProperties.put("password", jdbcPassword)
connectionProperties.put("driver", jdbcDriverClass)
val oracleDF = spark.read.jdbc(jdbcUrl, "table_name", connectionProperties)
```
2. 接下来,将数据写入Kafka。可以使用以下代码:
```scala
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.Trigger
val kafkaBrokers = "localhost:9092"
val kafkaTopic = "topic_name"
val kafkaDF = oracleDF.select(to_json(struct("*")).alias("value"))
.selectExpr("CAST(NULL AS STRING) AS key", "value")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBrokers)
.option("topic", kafkaTopic)
.trigger(Trigger.ProcessingTime("10 seconds"))
.start()
```
3. 最后,使用Spark Streaming从Kafka读取数据,并将其写入Hive表。可以使用以下代码:
```scala
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructType}
import org.apache.spark.sql.functions._
val spark = SparkSession.builder
.appName("KafkaToHive")
.enableHiveSupport()
.getOrCreate()
val kafkaBrokers = "localhost:9092"
val kafkaTopic = "topic_name"
val schema = new StructType().add("column_name", StringType)
val kafkaDF = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBrokers)
.option("subscribe", kafkaTopic)
.option("startingOffsets", "earliest")
.load()
.select(from_json(col("value").cast("string"), schema).alias("data"))
.select("data.*")
kafkaDF.writeStream
.outputMode("append")
.foreachBatch { (batchDF, _) =>
batchDF.write.mode("append").insertInto("hive_table")
}
.start()
.awaitTermination()
```
注意:在执行代码之前,需要先在Hive中创建相应的表,以便可以将数据写入其中。
阅读全文