hashmap链表长度为8,数组长度为什么是64才转红黑树

时间: 2023-06-20 08:10:37 浏览: 70
在Java 8中,HashMap的实现使用了"拉链法"(Chaining)来解决哈希冲突,即将哈希值相同的键值对存储在同一个链表上。默认情况下,HashMap的初始容量为16,负载因子为0.75,当HashMap中键值对的数量超过容量和负载因子的乘积时,就需要进行扩容操作。在扩容的过程中,HashMap会将数组长度扩大为原来的两倍,并将所有的键值对重新散列到新的数组中。 当链表长度超过8时,Java 8中的HashMap会将链表转换为红黑树来提高查询效率。这是因为,当链表长度过长时,查询操作的时间复杂度就会变得很高,甚至接近于O(n),而红黑树的查询操作时间复杂度为O(log n),所以将链表转换为红黑树可以大大提高查询效率。 因此,当HashMap中的链表长度超过8时,会考虑将链表转换为红黑树,而数组的长度在扩容的过程中会自动变成原来的两倍。所以,当数组长度为64时,每个链表的平均长度为8,正好符合转换为红黑树的条件。
相关问题

hashmap链表长度为8,数组长度为什么是64才转红黑树,详细说明数组长度

### 回答1: 在Java 8中,HashMap内部使用了数组和链表来实现键值对的存储。数组用来存储桶(bucket),每个桶下面会挂一个单向链表,用来存放键值对。 当链表长度超过8时,HashMap会将链表转化为红黑树,以提高查找效率。而数组长度的选择则是为了在不同负载因子下,保证不同的性能表现。 负载因子是指HashMap中已经存储的键值对数量与数组长度之比。当负载因子大于等于0.75时,HashMap会将数组长度扩大一倍,以减少哈希冲突的概率。因为随着数组长度的增加,哈希冲突的概率会逐渐降低。 而当数组长度大于等于64时,每个桶的平均链表长度为8时,HashMap会将链表转化为红黑树。这是因为,当链表长度较短时,使用链表比较快;但当链表长度过长时,查找效率会变得很低。而使用红黑树可以将查找时间从O(n)降低到O(log n),提高了HashMap的性能。具体的转化条件可以看下面的代码: ``` static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bin. */ static final int MIN_TREEIFY_CAPACITY = 64; ``` 在Java 8中,数组长度为2的整数次幂,这样可以通过位运算来计算哈希值对数组长度取模,提高效率。因此,数组长度为64是因为它既可以容纳足够多的键值对,也可以提供足够的桶数,同时在进行哈希运算时也比较高效。 ### 回答2: 在HashMap中,数组的长度涉及到HashMap的扩容机制和红黑树的转换条件。 首先,HashMap中的数组长度决定了HashMap的存储容量,当数组中的元素个数超过数组长度的0.75倍(即负载因子为0.75)时,HashMap会自动触发扩容操作。扩容操作会重新计算所有元素的哈希值,然后根据新的数组长度重新散列到新的数组中。 其次,当链表长度超过8时,HashMap会考虑将链表转换为红黑树。这是因为链表的增删操作的时间复杂度为O(n),当链表长度过长时,查找效率会变低。而红黑树可以保证查找、插入和删除操作的时间复杂度都为O(log n),效率更高。 为了平衡存储容量和查询效率之间的关系,HashMap设置了一个阈值,即当数组的长度大于等于64时,才会将链表转换为红黑树。这是因为当数组长度过小时,哈希冲突的概率较低,使用链表存储即可满足查询效率的要求。但当数组长度变大时,哈希冲突的概率会增加,此时将链表转换为红黑树能够更好地提高查询效率。 综上所述,HashMap中的数组长度为64才能触发链表转换为红黑树的条件,是为了在满足存储容量和查询效率的前提下,平衡哈希冲突的概率和查询操作的效率。 ### 回答3: 在HashMap中,数组的长度决定了HashMap的容量。HashMap使用数组和链表的结合来实现数据存储和高效的查找。当HashMap的元素较少时,直接使用数组来存储元素是最高效的,而当元素增多时,就需要进行优化。 数组的长度为64之所以被选为转换红黑树的阈值,是因为这个值经过了大量的实验和研究得出的最优值。在这个长度的数组中,每个数组位置上的链表平均长度为8时,哈希查找和插入操作均能在O(1)的时间复杂度内完成。 当链表长度超过8时,为了维持HashMap的高效性能,就需要将链表转化为红黑树。红黑树是一种自平衡的二叉搜索树,它能够保证在最坏情况下,查找、插入和删除操作的时间复杂度为O(log n)。通过将链表转换为红黑树,可以大大提升在大容量HashMap中的操作效率。 为什么数组长度为64才转换为红黑树?这是因为在链表长度较小时,红黑树的数据结构相对于链表来说,具有更大的存储开销。只有当链表长度超过一定阈值时,将链表转换为红黑树才能带来性能上的提升。而64作为阈值的选取,可以在大多数情况下平衡存储开销和性能之间的关系。 总而言之,当HashMap中的链表长度超过8时,为了保持操作的高效性能,会选择将链表转换为红黑树。数组长度为64是经验值,在这个长度的数组中进行转换,可以在大容量HashMap中取得较好的性能表现。

为什么HashMap 链表长度为64后变为红黑树

### 回答1: HashMap在Java中是一种常用的散列表实现。链表是HashMap中常用的存储结构,其中链表的长度被称为链表的阈值。当链表的长度达到一定阈值时,HashMap会将链表转换为红黑树,以提高查询性能。 在Java 8中,链表转换为红黑树的阈值为64。这个值是由Java开发人员根据性能测试结果确定的,旨在在保证性能的同时尽可能减少红黑树的使用。 转换为红黑树的原因是,红黑树是一种平衡二叉树,它可以保证查询、插入和删除操作的时间复杂度都是O(log n)。而链表的时间复杂度是O(n),在链表长度较长时查询效率就会下降。因此,为了提高查询效率,HashMap在链表长度达到一定阈值时会将链表转换为红黑树。 ### 回答2: 在Java的HashMap中,当链表的长度达到阈值(默认为8)时,会将链表转化为红黑树。这样做是为了减少查找操作的时间复杂度,提高HashMap的性能。 在链表中进行查找某个键值对时,需要遍历整个链表,时间复杂度为O(n),其中n是链表的长度。随着键值对数量的增加,链表长度也会增加,查找操作的效率会逐渐降低。 而红黑树是一种自平衡二叉查找树,它的查找操作的时间复杂度为O(log n),其中n是树的节点数量。相比链表的线性查找,红黑树的查找效率更高。 当链表长度达到阈值时,HashMap会将链表转化为红黑树。这个转化过程主要包括以下几个步骤: 1. 将链表中的键值对转移到一个新的树节点中。 2. 通过比较键值对的哈希值来确定插入节点的位置,保持树的有序性。 3. 在插入新节点后,如果发现树的高度过高(默认为8),会触发树的平衡操作,保持树的平衡性。 通过将链表转化为红黑树,查找操作的时间复杂度得到了降低,提高了HashMap的性能。但同时也带来了一定的额外开销,包括树节点的创建和维护平衡的操作。 需要注意的是,并不是所有的链表都会转化为红黑树,只有当链表长度超过阈值时才会进行转化。而当链表长度降低到一定程度(默认为6)时,红黑树又会转化回链表,以节省内存空间。 综上所述,HashMap在链表长度达到一定阈值后转化为红黑树,是为了提高查找操作的效率,优化了HashMap的性能。 ### 回答3: HashMap在jdk1.8版本中引入了一种新的数据结构,即红黑树。当HashMap中的链表长度达到一定阈值(默认为8)时,会自动将链表转换为红黑树。 首先,链表在查找元素和插入元素时的时间复杂度为O(n),其中n为链表的长度。当链表长度过长时,查找元素和插入元素的效率会大大降低。 而红黑树是一种平衡二叉查找树,它的查找、插入和删除的时间复杂度都为O(logn),其中n为树的节点数量。相比于链表,红黑树具有更高的效率。 因此,为了提高HashMap在查找和插入元素时的效率,当链表长度达到一定阈值后,就将链表转换为红黑树。这样一来,在HashMap中查找和插入元素时的效率就得到了提升。 需要注意的是,并不是所有的链表长度达到阈值后都会转换为红黑树,而是要满足一定条件。比如,当HashMap的容量大于64时,链表长度达到8时就会进行转换;容量小于等于64时,链表长度达到6时就会进行转换。这是因为容量较小的HashMap中,更频繁地进行扩容,转换成红黑树的成本较高。

相关推荐

最新推荐

recommend-type

(001)HashMap之链表转红黑树-treefyBin方法.docx

详细解读了HashMap中链表转红黑树的treefyBin方法,该方法中涉及到的诸如:replacementTreeNode方法、treeify方法、comparableClassFor方法、compareComparables方法、tieBreakOrder方法、balanceInsertion方法、...
recommend-type

前端Mock的使用,用于构造动态数据

适用于前端开发,前端构建动态数据
recommend-type

SQL语句的基本用法案例.pdf

“SQL语句的基本用法案例”的文档,是一份非常实用的学习资料,为初学者和进阶者提供了丰富的SQL操作示例。通过这份文档,读者可以系统地了解SQL语言在数据库管理中的应用,掌握从创建数据库到删除数据库的整个流程。 文档开篇便介绍了如何创建一个新的数据库,并详细说明了选择数据库、创建表以及插入数据的具体步骤。这不仅为读者展示了SQL语句的基础用法,也为后续的查询、更新和删除操作打下了坚实的基础。 在查询数据部分,文档通过多个示例展示了SQL查询的灵活性和强大功能。无论是查询所有学生信息,还是根据特定条件筛选数据,都能通过简单的SQL语句实现。此外,文档还介绍了如何计算学生的总数、平均年龄等统计信息,以及如何对数据进行排序和限制结果。 除了基础的增删改查操作,文档还深入介绍了子查询、连接表以及窗口函数等高级用法。这些功能在实际应用中非常常见,能够帮助用户解决更为复杂的数据处理问题。 此外,文档还提供了清晰的代码示例和注释,使得读者能够轻松理解每个步骤的含义和目的。同时,文档的语言简洁明了,逻辑清晰,使得学习过程更加轻松愉快。
recommend-type

node-v7.7.4-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依