python导入鸢尾花数据集
时间: 2023-07-09 14:25:25 浏览: 160
python导入鸢尾花数据集,使用主成分分析函数对鸢尾花数据集降维数据集和原始数据集分别进行线性判别比较分析的准确率
你可以使用Scikit-learn库中的`load_iris()`函数来导入鸢尾花数据集,示例如下:
```python
from sklearn.datasets import load_iris
# 导入鸢尾花数据集
iris = load_iris()
# 查看数据集的描述信息
print(iris.DESCR)
# 获取数据集的特征数据和标签数据
X = iris.data
y = iris.target
# 查看特征数据和标签数据的形状
print('特征数据的形状:', X.shape)
print('标签数据的形状:', y.shape)
```
输出结果如下:
```
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the pattern recognition
literature. Fisher's paper is a classic in the field and is referenced
frequently to this day. (See Duda & Hart, for example.) The data set contains
3 classes of 50 instances each, where each class refers to a type of iris plant.
One class is linearly separable from the other 2; the latter are NOT linearly
separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
特征数据的形状: (150, 4)
标签数据的形状: (150,)
```
其中,`iris.data`为特征数据,`iris.target`为标签数据。
阅读全文