python划分鸢尾花数据集搭建决策树

时间: 2023-10-15 15:04:33 浏览: 97
好的,以下是Python代码实现: 首先,我们需要导入所需的库: ```python import pandas as pd from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ``` 接着,我们可以加载鸢尾花数据集: ```python iris = load_iris() ``` 然后,我们将数据集转换成pandas的DataFrame格式,以便更好地进行数据处理: ```python df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df['target'] = iris.target ``` 接着,我们可以使用train_test_split()函数将数据集分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(df[iris.feature_names], df['target'], random_state=0) ``` 现在,我们可以使用sklearn中的DecisionTreeClassifier类来训练决策树模型,并使用训练集进行拟合: ```python dtc = DecisionTreeClassifier(random_state=0) dtc.fit(X_train, y_train) ``` 最后,我们可以使用测试集来评估模型的性能: ```python y_pred = dtc.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) ``` 完整代码如下: ```python import pandas as pd from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score iris = load_iris() df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df['target'] = iris.target X_train, X_test, y_train, y_test = train_test_split(df[iris.feature_names], df['target'], random_state=0) dtc = DecisionTreeClassifier(random_state=0) dtc.fit(X_train, y_train) y_pred = dtc.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) ``` 希望这可以帮助到你!
阅读全文

相关推荐

zip
【项目介绍】 基于Python.Numpy实现决策树预测鸢尾花的种类源码+数据集+使用说明.zip 请改成自己的文件路径!!! # 一、概述 基于Python.Numpy实现决策树,预测鸢尾花的种类与西瓜的好坏 # 二、文件夹结构功能 ### 1.文件夹 - figure:该文档中的图片 - data:鸢尾花与西瓜数据集 - dot:dot文件路径 ### 2.文件 - tree.py:树节点类 - decisiontree.py:决策树 - iris_test1.py:鸢尾花分类,测试离散属性分类,使用两个特征进行分类,绘制分类图 - iris_test2.py:鸢尾花分类,测试离散属性分类,使用四个特征进行分类,绘制决策树 - watermelon_test.py:西瓜分类,测试连续属性分类,绘制决策树 # 三、项目运行 ## 1.决策树分类结果演示 ### 1.1测试目标 - 使用二维特征对鸢尾花进行分类 - 绘制决策树在平面内分类界限 - 绘制决策树 - 观察决策树深度对预测正确率的影响 ### 1.2测试方式 - 运行iris_test1.py文件 ### 1.3测试结果 - 1.绘制决策树在平面内分类界限如下图所示,其中圆点为训练数据集,星点为测试数据集。测试数据集预测正确率为67.4%。 ![](./figure/Figure_1.png) - 2.决策树如下图所示。 ![](./figure/ris_test1.png) - 3.决策树深度对预测正确率的影响如下图所示,可以观察到,决策树的预测正确率并不随着深度的加深而增加。 ![](./figure/Figure_2.png) ## 2.鸢尾花决策树分类结果演示 ### 2.1测试目标 - 使用所有特征对鸢尾花进行分类 - 绘制决策树 - 观察决策树深度对预测正确率的影响 ### 2.2测试方式 - 运行iris_test2.py文件 ### 2.3测试结果 - 1.决策树如下图所示。 ![](./figure/iris_test2.png) - 2.决策树深度对预测正确率的影响如下图所示。 ![](./figure/Figure_3.png) ## 3.西瓜决策树分类结果演示 ### 3.1测试目标 - 使用所有特征对西瓜进行分类 - 测试连续、离散属性混合分类 - 绘制决策树 - 观察决策树深度对预测正确率的影响 ### 3.2测试方式 - 运行watermelon_test.py文件 ### 3.3测试结果 - 1.决策树如下图所示。 ![](./figure/watermelon_test.png) - 2.决策树深度对预测正确率的影响如下图所示。 ![](./figure/Figure_4.png) # 四、说明 绘制决策树需要使用graphviz工具。 运行该工程只需安装graphviz即可,不需要安装graphviz的python包。 【备注】 1.项目代码均经过功能验证,确保稳定可靠运行。欢迎下载食用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!

最新推荐

recommend-type

基于鸢尾花数据集实现线性判别式多分类

在本项目中,我们利用鸢尾花数据集(Iris dataset)实现了一个基于逻辑斯蒂判别式(Logistic Discriminant Analysis, LDA)的多分类算法。鸢尾花数据集是一个经典的数据集,它包含了三种不同类型的鸢尾花样本,每种...
recommend-type

python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

【Python实现鸢尾花聚类算法】 聚类是无监督学习的一种重要方法,主要用于发现数据集中的自然分组。...对于鸢尾花数据集,通过Python的`sklearn`库,我们可以方便地实现这些算法,并通过可视化结果进行分析和比较。
recommend-type

决策树剪枝算法的python实现方法详解

在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即...
recommend-type

Python机器学习之决策树算法实例详解

在Python实现中,`calcShannonEnt`函数用于计算数据集的熵,而`chooseBestFeatureToSplit`函数则负责选取信息增益最大的特征进行划分。 ID3算法是最早的决策树学习算法之一,它基于信息增益来选择最佳特征。然而,...
recommend-type

Python决策树之基于信息增益的特征选择示例

在Python中,信息增益是一种常见的特征选择方法,尤其在决策树算法中被广泛应用。本篇文章将深入探讨基于信息增益的特征选择,并通过一个具体的实例来说明其原理和实现过程。 1. **信息增益的定义**: - **熵**...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。