补充这段代码:#include <iostream> #include "mystack.h" using namespace std; mystack::mystack(int num=100) { pointer=new int [num]; upOfStack=pointer-1; Size=num; } bool mystack::isempty() { if (upOfStack==(pointer-1)) { return true; } else return false; } bool mystack::isfull() { if (upOfStack-pointer==(Size-1)) { return true; } else return false; } bool mystack::push(int i) { if (upOfStack-pointer<(Size-1)) { upOfStack++; *upOfStack=i; return true; } else return false; } bool mystack::pop(int &data) { if (upOfStack>=pointer) { data=*upOfStack; upOfStack--; return true; }
时间: 2024-04-27 22:24:44 浏览: 96
else return false; } int mystack::top() { if (upOfStack>=pointer) { return *upOfStack; } else return -1; } mystack::~mystack() { delete [] pointer; }
这段代码是一个基于数组实现的栈的实现,包括了栈的初始化、判断是否为空、判断是否已满、入栈、出栈、取栈顶元素、析构函数等。其中,初始化函数mystack::mystack(int num=100)中指定了栈的最大大小为num,默认为100;isEmpty()和isFull()函数分别判断栈是否为空和已满;push()和pop()函数分别实现元素的入栈和出栈,并返回操作是否成功;top()函数返回栈顶元素的值;析构函数mystack::~mystack()释放动态分配的数组内存。
相关问题
在不使用任何STL容器的前提下实现这个代码#include <iostream> #include <memory> #include <stack> #include <fstream> #include <vector> #include <cmath> #include <iomanip> #include <exception> #include <climits> #include <array> #include <cstdint> #include <string> using namespace std; class T { public: virtual bool isOperator() = 0; virtual ~T() {} };
可以使用裸指针和自定义容器实现这段代码。
首先,我们需要定义一个自定义容器来存储T类型的指针。这个容器可以使用动态数组实现,需要自己管理内存。下面是一个简单的实现:
```c++
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
接下来,我们需要定义一个栈,用来存储T类型的指针。这个栈可以使用动态数组实现,也需要自己管理内存。栈的基本操作包括push、pop、top等,可以按照以下方式实现:
```c++
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
最后,我们可以定义一个派生自T的类,来实现isOperator()函数。这个函数在子类中可以根据实际需求来具体实现。
```c++
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
```
这样,就可以在不使用STL容器的前提下实现这个代码了。完整代码如下:
```c++
#include <iostream>
using namespace std;
class T {
public:
virtual bool isOperator() = 0;
virtual ~T() {}
};
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
int main() {
MyVector vec;
vec.push_back(new MyT());
vec.clear();
MyStack stk;
stk.push(new MyT());
stk.clear();
return 0;
}
```
#include <iostream>#include <ctime>#include <cstdlib>#include <stack>#include <vector>
在C++中,`<iostream>`、`<ctime>`、`<cstdlib>`、`<stack>`和`<vector>`是一些标准库头文件,分别用于输入输出、时间操作、系统资源操作、栈(后进先出数据结构)和动态数组(向量)。
以下是使用这些头文件的一些简单示例:
1. 输入输出(iostream)
```cpp
#include <iostream>
int main() {
std::cout << "Hello, World!\n"; // 输出 "Hello, World!"
std::cin >> someVariable; // 从用户那里读取输入
return 0;
}
```
2. 时间操作(ctime)
```cpp
#include <ctime>
std::time_t now = std::time(0); // 获取当前时间
std::cout << "Current time: " << std::ctime(&now);
```
3. 随机数生成(cstdlib)
```cpp
#include <cstdlib>
#include <ctime>
int random_number = std::rand(); // 生成一个随机整数
```
4. 栈(stack)
```cpp
#include <stack>
std::stack<int> myStack;
myStack.push(1); // 入栈
std::cout << "Top of stack: " << myStack.top(); // 输出栈顶元素
```
5. 向量(vector)
```cpp
#include <vector>
std::vector<int> myVector;
myVector.push_back(5); // 向向量添加元素
std::cout << "Last element: " << myVector.back(); // 输出向量最后一个元素
```
阅读全文