batch_acc是什么
时间: 2023-12-21 20:05:15 浏览: 172
batch_acc是指一个批次(batch)中样本的准确率(accuracy)。在机器学习和深度学习任务中,通常会将大量的数据分成小批次进行训练或推断。对于分类任务来说,准确率是评估模型性能的一项重要指标,它表示模型在当前批次中预测正确的样本比例。batch_acc可以通过计算正确预测样本数量与批次总样本数量的比值来得到。
相关问题
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定 import numpy as np import matplotlib.pyplot as plt from dataset.mnist import load_mnist from two_layer_net import TwoLayerNet # 读入数据 (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10) iters_num = 10000 # 适当设定循环的次数 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) for i in range(iters_num): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] # 计算梯度 #grad = network.numerical_gradient(x_batch, t_batch) grad = network.gradient(x_batch, t_batch) # 更新参数 for key in ('W1', 'b1', 'W2', 'b2'): network.params[key] -= learning_rate * grad[key] loss = network.loss(x_batch, t_batch) train_loss_list.append(loss) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc)) # 绘制图形 markers = {'train': 'o', 'test': 's'} x = np.arange(len(train_acc_list)) plt.plot(x, train_acc_list, label='train acc') plt.plot(x, test_acc_list, label='test acc', linestyle='--') plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show()什么意思
这段代码是一个使用两层神经网络(TwoLayerNet)对MNIST数据集进行训练和测试的示例代码。以下是代码的功能和流程:
1. 导入必要的库和模块。
2. 使用`load_mnist`函数从MNIST数据集中加载训练集和测试集。
3. 创建一个TwoLayerNet的实例,指定输入大小、隐藏层大小和输出大小。
4. 设置一些超参数,如迭代次数、训练集大小、批处理大小和学习率。
5. 初始化一些空列表,用于存储训练过程中的损失值和准确率。
6. 计算每个epoch的迭代次数。
7. 开始迭代训练:
- 随机选择一个batch的训练样本。
- 计算梯度。
- 更新模型参数。
- 计算当前batch的损失值,并将其添加到训练损失列表中。
- 每个epoch结束后,计算并记录训练集和测试集的准确率。
8. 绘制训练集和测试集准确率随epoch变化的曲线图。
这段代码实现了一个简单的两层神经网络,并使用随机梯度下降算法进行参数更新。通过迭代训练,最终得到训练集和测试集的准确率曲线图。
def SGD(self, training_data, epochs, mini_batch_size, learning_rate, lambda_, test_data): """ train_data: list of tuples, length 50000. tuple[0]: vectorized image np_array: shape(784, 1) tuple[1]: one-hot encoded label np_array: shape(10, 1) epochs: number of epochs to train. mini_batch_size: size of mini batch. learning_rate: learning rate. lambda_: regularization parameter. test_data: list of tuples, length 10000. """ l = len(training_data) test_acc_list = [] loss_list = [] for j in range(epochs): random.shuffle(training_data) cost_j = 0 mini_batches = [training_data[i:i + mini_batch_size] for i in range(0, l, mini_batch_size)] for mini_batch in mini_batches: x, y = self.merge(mini_batch) c_j = self.gradient_descent(x, y, learning_rate, lambda_) cost_j += c_j cost_j /= (l / mini_batch_size) loss_list.append(cost_j) test_acc = self.evaluate(test_data) / len(test_data) test_acc_list.append(test_acc) print('Epoch_{}: loss:{:.2f} accuracy:{:.2f}%' .format(j, cost_j, test_acc * 100)) if j > 10: if (abs(test_acc_list[j] - test_acc_list[j - 1]) <= 5e-5) \ & (abs(test_acc_list[j - 1] - test_acc_list[j - 2]) <= 5e-5): break draw_acc_loss(test_acc_list, loss_list, j + 1)
这段代码是一个使用随机梯度下降(SGD)算法进行训练的函数。函数中的lambda_参数是正则化参数,用于控制模型的复杂度。下面是函数的主要步骤:
1. 初始化一些变量,包括用于存储损失和测试准确率的列表。
2. 循环执行指定的epochs次数。
3. 在每个epoch开始之前,随机打乱训练数据。
4. 将训练数据划分成mini_batches,每个mini_batch包含指定大小的样本。
5. 对于每个mini_batch,将输入数据x和标签y合并,并使用梯度下降算法进行参数更新,计算并累计损失值cost_j。
6. 计算每个epoch的平均损失cost_j,并将其添加到损失列表中。
7. 计算测试数据的准确率,并将其添加到准确率列表中。
8. 打印当前epoch的损失和准确率。
9. 如果准确率连续两次变化小于或等于5e-5,则跳出循环。
10. 最后,绘制准确率和损失的图像。
请注意,这只是代码的一部分,缺少了一些函数或方法的实现细节,比如merge和gradient_descent函数。
阅读全文