fr共轭梯度法matlab程序
时间: 2023-09-08 10:11:36 浏览: 184
以下是使用 MATLAB 实现的共轭梯度法的示例代码:
```matlab
function [x, flag, relres, iter, resvec] = my_cg(A, b, x0, tol, max_iter)
% A: 系数矩阵
% b: 右侧常数向量
% x0: 初始解向量
% tol: 相对残量阈值
% max_iter: 最大迭代次数
% x: 迭代后求得的解向量
% flag: 表示是否收敛,0 表示迭代成功,1 表示达到最大迭代次数
% relres: 相对残量
% iter: 实际迭代次数
% resvec: 残量向量
n = length(b);
r = b - A * x0;
p = r;
x = x0;
resvec = zeros(max_iter, 1);
resvec(1) = norm(r);
for iter = 1:max_iter
Ap = A * p;
alpha = (r' * r) / (p' * Ap);
x = x + alpha * p;
r_new = r - alpha * Ap;
beta = (r_new' * r_new) / (r' * r);
p = r_new + beta * p;
r = r_new;
resvec(iter+1) = norm(r);
relres = resvec(iter+1) / resvec(1);
if relres < tol
flag = 0;
break;
end
end
if iter == max_iter
flag = 1;
else
flag = 0;
end
resvec = resvec(1:iter+1);
end
```
使用示例:
```matlab
% 生成一个 10x10 的对称正定矩阵
A = gallery('poisson', 10);
b = ones(10, 1); % 右侧常数向量
x0 = zeros(10, 1); % 初始解向量
tol = 1e-6; % 相对残量阈值
max_iter = 1000; % 最大迭代次数
[x, flag, relres, iter, resvec] = my_cg(A, b, x0, tol, max_iter);
```
在这个示例中,我们生成了一个 10x10 的对称正定矩阵,并使用共轭梯度法求解线性方程组 $Ax=b$ 的解 $x$。
阅读全文
相关推荐














