FR共轭梯度法matlab
时间: 2023-11-28 21:46:14 浏览: 149
共轭梯度法的matlab实现
FR共轭梯度法是一种无约束优化算法,用于求解目标函数的最小值。在MATLAB中,可以编写相应的函数来实现FR共轭梯度法。下面是两个函数的介绍:
1. 编写FR共轭梯度法求解无约束优化问题的函数,采用黄金分割法精确一维搜索,用数值微分法计算梯度,函数式M文件,精度设为epson可调。
```matlab
function [x, fval, k] = FR_conjugate_gradient(f, x0, epson)
% f: 目标函数
% x0: 初始点
% epson: 精度
% x: 最优解
% fval: 最优解对应的函数值
% k: 迭代次数
% 初始化
k = 0;
x = x0;
g = gradient(f, x);
d = -g;
alpha = golden_section(f, x, d);
x = x + alpha * d;
g_new = gradient(f, x);
beta = (g_new' * g_new) / (g' * g);
d = -g_new + beta * d;
% 迭代
while norm(g_new) > epson
k = k + 1;
g = g_new;
alpha = golden_section(f, x, d);
x = x + alpha * d;
g_new = gradient(f, x);
beta = (g_new' * g_new) / (g' * g);
d = -g_new + beta * d;
end
fval = f(x);
end
% 数值微分法计算梯度
function g = gradient(f, x)
h = 1e-6;
n = length(x);
g = zeros(n, 1);
for i = 1:n
x1 = x;
x1(i) = x1(i) + h;
g(i) = (f(x1) - f(x)) / h;
end
end
% 黄金分割法精确一维搜索
function alpha = golden_section(f, x, d)
a = 0;
b = 1;
epsilon = 1e-6;
phi = (1 + sqrt(5)) / 2;
resphi = 2 - phi;
x1 = a + resphi * (b - a);
x2 = b - resphi * (b - a);
f1 = f(x + x1 * d);
f2 = f(x + x2 * d);
while abs(b - a) > epsilon
if f1 < f2
b = x2;
x2 = x1;
x1 = a + resphi * (b - a);
f2 = f1;
f1 = f(x + x1 * d);
else
a = x1;
x1 = x2;
x2 = b - resphi * (b - a);
f1 = f2;
f2 = f(x + x2 * d);
end
end
alpha = (a + b) / 2;
end
```
2. 编写n步重新开始的FR共轭梯度法求解无约束优化问题的函数,采用黄金分割法精确一维搜索,用数值微分法计算梯度,函数式M文件,精度设为epson可调。
```matlab
function [x, fval, k] = n_restart_FR_conjugate_gradient(f, x0, epson, n)
% f: 目标函数
% x0: 初始点
% epson: 精度
% n: 重新开始的步数
% x: 最优解
% fval: 最优解对应的函数值
% k: 迭代次数
% 初始化
k = 0;
x = x0;
g = gradient(f, x);
d = -g;
alpha = golden_section(f, x, d);
x = x + alpha * d;
g_new = gradient(f, x);
beta = (g_new' * g_new) / (g' * g);
d = -g_new + beta * d;
% 迭代
while norm(g_new) > epson
k = k + 1;
if mod(k, n) == 0
d = -g_new;
end
g = g_new;
alpha = golden_section(f, x, d);
x = x + alpha * d;
g_new = gradient(f, x);
beta = (g_new' * g_new) / (g' * g);
d = -g_new + beta * d;
end
fval = f(x);
end
% 数值微分法计算梯度
function g = gradient(f, x)
h = 1e-6;
n = length(x);
g = zeros(n, 1);
for i = 1:n
x1 = x;
x1(i) = x1(i) + h;
g(i) = (f(x1) - f(x)) / h;
end
end
% 黄金分割法精确一维搜索
function alpha = golden_section(f, x, d)
a = 0;
b = 1;
epsilon = 1e-6;
phi = (1 + sqrt(5)) / 2;
resphi = 2 - phi;
x1 = a + resphi * (b - a);
x2 = b - resphi * (b - a);
f1 = f(x + x1 * d);
f2 = f(x + x2 * d);
while abs(b - a) > epsilon
if f1 < f2
b = x2;
x2 = x1;
x1 = a + resphi * (b - a);
f2 = f1;
f1 = f(x + x1 * d);
else
a = x1;
x1 = x2;
x2 = b - resphi * (b - a);
f1 = f2;
f2 = f(x + x2 * d);
end
end
alpha = (a + b) / 2;
end
```
阅读全文