给出注释void delay(uint count) { uint i; while(count) { i=200; while(i>0) i--; count--; }

时间: 2024-04-28 21:21:49 浏览: 23
这段代码是一个简单的延时函数,其作用是在执行到该函数时,让程序暂停一段时间,以达到延时的目的。具体注释如下: - void delay(uint count):函数名为 delay,其参数 count 表示要延时的时间,类型为无符号整型。 - uint i:定义一个无符号整型变量 i,用于控制内部的循环次数。 - while(count):外部循环,当 count 的值不为 0 时一直执行。 - i=200:将 i 的初始值设为 200,用于内部循环的计数。 - while(i>0):内部循环,当 i 大于 0 时一直执行。 - i--:每次循环结束,将 i 减一。 - count--:外部循环每执行一次,将 count 减一,直到 count 的值为 0,跳出外部循环,函数执行结束。
相关问题

uint32 bluetooth_ch9141_read_buff (uint8 *buff, uint32 len) { uint32 data_len = len; fifo_read_buffer(&bluetooth_ch9141_fifo, buff, &data_len, FIFO_READ_AND_CLEAN); return data_len; }uint32 bluetooth_ch9141_send_buff (uint8 *buff, uint32 len) { uint16 time_count = 0; while(len > 30) { time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, 30); buff += 30; // 地址偏移 len -= 30; // 数量 } time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, (uint16)len); // 发送最后的数据 return 0; }uint8 bluetooth_ch9141_init (void) { wireless_type = WIRELESS_CH9141; // 本函数使用的波特率为115200 为蓝牙转串口模块的默认波特率 如需其他波特率请使用上位机修改模块参数 fifo_init(&bluetooth_ch9141_fifo, bluetooth_ch9141_buffer, BLUETOOTH_CH9141_BUFFER_SIZE); uart_init(BLUETOOTH_CH9141_INDEX, BLUETOOTH_CH9141_TX_PIN, BLUETOOTH_CH9141_RX_PIN, BLUETOOTH_CH9141_BUAD_RATE, BLUETOOTH_CH9141_TIMER); return 0; } void bluetooth_ch9141_uart_callback (void) { // 读取无线串口的数据 并且置位接收标志 bluetooth_ch9141_data = BLUETOOTH_CH9141_DATA_BUF; fifo_write_buffer(&bluetooth_ch9141_fifo, &bluetooth_ch9141_data, 1); // 存入 FIFO } static fifo_struct bluetooth_ch9141_fifo; static uint8 bluetooth_ch9141_buffer[BLUETOOTH_CH9141_BUFFER_SIZE]; // 数据存放数组 static uint8 bluetooth_ch9141_data;将以上代码改写一个适合于HC-05的蓝牙代码基于stc3

以下是基于 STC3 的 HC-05 蓝牙模块的修改后代码示例: ```c #include <reg51.h> #define BLUETOOTH_HC05_BUFFER_SIZE 64 #define BLUETOOTH_HC05_TIMEOUT_COUNT 1000 typedef struct { uint8_t buffer[BLUETOOTH_HC05_BUFFER_SIZE]; uint8_t head; uint8_t tail; } fifo_struct; fifo_struct bluetooth_hc05_fifo; void fifo_init(fifo_struct *fifo) { fifo->head = 0; fifo->tail = 0; } void fifo_write_buffer(fifo_struct *fifo, uint8_t *data, uint8_t len) { uint8_t i; for (i = 0; i < len; i++) { fifo->buffer[fifo->head] = data[i]; fifo->head = (fifo->head + 1) % BLUETOOTH_HC05_BUFFER_SIZE; } } uint8_t fifo_read_buffer(fifo_struct *fifo, uint8_t *data, uint8_t *len) { uint8_t i; for (i = 0; i < *len; i++) { if (fifo->head == fifo->tail) { // Buffer is empty *len = i; return 1; } data[i] = fifo->buffer[fifo->tail]; fifo->tail = (fifo->tail + 1) % BLUETOOTH_HC05_BUFFER_SIZE; } return 0; } void delay_ms(uint16_t ms) { uint16_t i, j; for (i = 0; i < ms; i++) { for (j = 0; j < 120; j++) { // Delay approximately 1ms } } } void uart_init(uint32_t buad_rate) { // UART initialization code for STC3 // Set UART baud rate and other configuration } void uart_putbuff(uint8_t *buff, uint8_t len) { // UART send buffer code for STC3 // Send the buffer over UART } void uart_getbuff(uint8_t *buff, uint8_t len) { // UART receive buffer code for STC3 // Receive data into the buffer over UART } uint32_t bluetooth_hc05_read_buff(uint8_t *buff, uint32_t len) { uint32_t data_len = len; fifo_read_buffer(&bluetooth_hc05_fifo, buff, &data_len); return data_len; } uint32_t bluetooth_hc05_send_buff(uint8_t *buff, uint32_t len) { uint16_t time_count = 0; while (len > 30) { time_count = 0; while (time_count++ < BLUETOOTH_HC05_TIMEOUT_COUNT && BLUETOOTH_HC05_RTS_PIN) { delay_ms(1); } if (time_count >= BLUETOOTH_HC05_TIMEOUT_COUNT) { return len; // 模块忙,如果允许当前程序使用 while 等待则可以使用后面注释的 while 等待语句替换本 if 语句 } uart_putbuff(buff, 30); buff += 30; // 地址偏移 len -= 30; // 数量 } time_count = 0; while (time_count++ < BLUETOOTH_HC05_TIMEOUT_COUNT && BLUETOOTH_HC05_RTS_PIN) { delay_ms(1); } if (time_count >= BLUETOOTH_HC05_TIMEOUT_COUNT) { return len; // 模块忙,如果允许当前程序使用 while 等待则可以使用后面注释的 while 等待语句替换本 if 语句 } uart_putbuff(buff, (uint16_t)len); // 发送最后的数据 return 0; } uint8_t bluetooth_hc05_init(void) { // Initialization code for HC-05 on STC3 fifo_init(&bluetooth_hc05_fifo); uart_init(BLUETOOTH_HC05_BUAD_RATE); return 0; } void bluetooth_hc05_uart_callback(void) { uint8_t data = uart_getbuff(); fifo_write_buffer(&bluetooth_hc05_fifo, &data, 1); // 存入 FIFO } uint8_t bluetooth_hc05_data; void main(void) { bluetooth_hc05_init(); while (1) { // Main program loop // Read and process data from the FIFO buffer while (bluetooth_hc05_data = fifo_read_buffer(&bluetooth_hc05_fifo)) { // Process data } } } ``` 请注意,上述代码仅为示例,具体的引脚定义和常量值需要根据你的硬件和需求进行修改。另外,需要根据实际情况修改函数中的 UART 初始化、发送和接收函数,以适配 STC3 的硬件平台。

#include<reg52.h> #define uint unsigned int #define uchar unsigned char sbit P10=P1^0; uchar a=0;//T0中断次数 char c=0; //闪烁次数 uint b=0; //外部中断(S14问 uint z; //判断减一执行后是否开启加一按键 void delay(uint z); void display(); uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; uchar code wei[]={0x01,0x02}; uchar m[]={0,0}; void delay(uint z){ //延迟函数 uint j,k; for(j=0;j<z;j++) for(k=0;k<25;k++); } void display(){ //数码管显示函数 uchar i; m[0]=TL1%10; m[1]=TL1/10; for(i=0;i<2;i++){ P2=wei[i]; P0=table[m[i]]; delay(10); } } void tini(){ //定时/计数器初始化 TMOD=0x61; //T0方式1定时,T1方式计数 0110 0001 TL1=0x00; TH0=(65536-50000)/256; TL0=(65536-50000)%256; TR0=0; //T0停止计数 TR1=0; //T1停止计数 } void exini(){ //外部中断初始化 EA=1; //CPU开中断 EX0=1; //允许INT0中断 EX1=1; //允许INT1中断 ET0=1; //允许T0中断 ET1=1; //允许T1中断 PX0=1; IT0=1; //INT0中断下降沿触发 IT1=1; //INT1中断下降沿触发 } void shanshuo(){ //闪烁程序 for(c=TL1;c>0;c--){ P10=1; delay(500); display(); P10=0; delay(500); display(); } } void main (void) { exini(); tini(); while(1){ display(); } } void int3_0() interrupt 0{ //外部中断0服务程序 b=b+1; //中断次数加一 TR1=1; //启动计数器1 switch(b){ case 1:TR1=1;break; case 2:TR1=0;b=0;TR0=1;break; } } void int1_0() interrupt 2{ //外部中断1服务程序 if(TR1==1) z=0; else z=1; TR1=0; if(TL1>0){ TL1=TL1-1; //计数值减一 } else{ TL1=0; TR1=0; } if(z==0) TR1=1; else if(z==1) TR1=0; } void int1_3() interrupt 1{ //计时器T0中断服务程序 TH0=(65536-50000)/256; //定时50ms时间常数 TL0=(65536-50000)%256; a=a+1; //中断次数加一 if(a==100){ a=0; TR0=0; //停止计时 shanshuo(); P10=1; //LED熄灭 } } 对此代码进行完善处理

以下是对代码的完善处理: 1. 在代码开始处添加注释,说明代码的功能和使用说明。 ``` // 该代码实现了一个计数器和定时器的功能,同时可以控制LED灯的闪烁 // 使用前需要连接外部按键和数码管显示器,并将LED灯连接到P1.0口 ``` 2. 将变量的命名改为更加有意义的名称。 ``` uchar count_t0 = 0; // T0中断次数 char blink_count = 0; // 闪烁次数 uint count_t1 = 0; // 外部中断(S1)次数 uint z; // 判断减一执行后是否开启加一按键 uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; // 7段数码管显示的码表 uchar code wei[]={0x01,0x02}; // 数码管显示的位选码 uchar m[]={0,0}; // 数码管显示的数值 ``` 3. 将延迟函数的参数名称改为更有意义的名称,并在函数内部添加注释。 ``` void delay(uint ms){ // 延迟函数,ms为延迟的毫秒数 uint i,j; for(i=0;i<ms;i++){ for(j=0;j<25;j++); } } ``` 4. 在数码管显示函数中添加注释,并将循环变量的名称改为更有意义的名称。 ``` void display(){ // 数码管显示函数 uchar i; m[0]=count_t1%10; // 个位数 m[1]=count_t1/10; // 十位数 for(i=0;i<2;i++){ P2=wei[i]; // 选中第i位 P0=table[m[i]]; // 显示第i位的数值 delay(10); // 稍作延迟 } } ``` 5. 在定时器/计数器初始化函数中添加注释,将定时器/计数器的功能描述清晰明了。 ``` void tini(){ // 定时/计数器初始化 TMOD=0x61; // T0方式1定时,T1方式计数 0110 0001 TL1=0x00; // 计数器1的初值为0 TH0=(65536-50000)/256; // 定时器0的时间常数,每50ms中断一次 TL0=(65536-50000)%256; TR0=0; // T0停止计时 TR1=0; // T1停止计数 } ``` 6. 在外部中断初始化函数中添加注释,将外部中断的功能描述清晰明了。 ``` void exini(){ // 外部中断初始化 EA=1; // CPU开中断 EX0=1; // 允许INT0中断 EX1=1; // 允许INT1中断 ET0=1; // 允许T0中断 ET1=1; // 允许T1中断 PX0=1; IT0=1; // INT0中断下降沿触发 IT1=1; // INT1中断下降沿触发 } ``` 7. 在闪烁程序函数中添加注释,将闪烁的功能描述清晰明了。 ``` void shanshuo(){ // 闪烁程序,LED灯闪烁count_t1次 for(blink_count=count_t1;blink_count>0;blink_count--){ P10=1; // LED亮起 delay(500); // 延迟500ms display(); // 显示数值 P10=0; // LED熄灭 delay(500); display(); } } ``` 8. 将主函数中的循环体添加注释,并在最后添加一个无限循环。 ``` void main (void) { exini(); // 外部中断初始化 tini(); // 定时/计数器初始化 while(1){ display(); // 显示数值 } } ``` 9. 在中断服务函数中添加注释,将中断的功能描述清晰明了。 ``` void int3_0() interrupt 0{ // 外部中断0服务程序,S1按键 count_t1++; // 中断次数加一 TR1=1; // 启动计数器1 switch(count_t1){ case 1: TR1=1; break; // 第一次按键,启动计数器1 case 2: TR1=0; count_t1=0; TR0=1; break; // 第二次按键,停止计数器1,启动定时器0 } } void int1_0() interrupt 2{ // 外部中断1服务程序,S2按键 if(TR1==1) z=0; // 如果计数器1正在计数,则z=0 else z=1; // 否则z=1 TR1=0; // 停止计数器1 if(count_t1>0){ count_t1--; // 计数值减一 } else { count_t1=0; TR1=0; } if(z==0) TR1=1; // 如果执行了减一操作,则开启计数器1 else if(z==1) TR1=0; // 如果执行了加一操作,则关闭计数器1 } void int1_3() interrupt 1{ // 计时器T0中断服务程序 TH0=(65536-50000)/256; // 重新加载时间常数,每50ms中断一次 TL0=(65536-50000)%256; count_t0++; // 中断次数加一 if(count_t0==100){ // 每隔1s执行一次 count_t0=0; // 计数器清零 TR0=0; // 停止计时 shanshuo(); // LED灯闪烁count_t1次 P10=1; // LED灯熄灭 } } ```

相关推荐

uint32 bluetooth_ch9141_read_buff (uint8 *buff, uint32 len) { uint32 data_l = len; fifo_read_buffer(&bluetooth_ch9141_fifo, buff, &data_l, FIFO_READ_AND_CLEAN); return data_l; }uint32 bluetooth_ch9141_send_buff (uint8 *buff, uint32 len) { uint16 time_count = 0; while(len > 30) { time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, 30); buff += 30; // 地址偏移 len -= 30; // 数量 } time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, (uint16)len); // 发送最后的数据 return 0; }uint8 bluetooth_ch9141_init (void) { wireless_type = WIRELESS_CH9141; // 本函数使用的波特率为115200 为蓝牙转串口模块的默认波特率 如需其他波特率请使用上位机修改模块参数 fifo_init(&bluetooth_ch9141_fifo, bluetooth_ch9141_buffer, BLUETOOTH_CH9141_BUFFER_SIZE); uart_init(BLUETOOTH_CH9141_INDEX, BLUETOOTH_CH9141_TX_PIN, BLUETOOTH_CH9141_RX_PIN, BLUETOOTH_CH9141_BUAD_RATE, BLUETOOTH_CH9141_TIMER); return 0; }void bluetooth_ch9141_uart_callback (void) { // 读取无线串口的数据 并且置位接收标志 bluetooth_ch9141_data = BLUETOOTH_CH9141_DATA_BUF; fifo_write_buffer(&bluetooth_ch9141_fifo, &bluetooth_ch9141_data, 1); // 存入 FIFO }static fifo_struct bluetooth_ch9141_fifo; static uint8 bluetooth_ch9141_buffer[BLUETOOTH_CH9141_BUFFER_SIZE]; // 数据存放数组 static uint8 bluetooth_ch9141_data;这些函数怎么使用能使蓝牙工作

最新推荐

recommend-type

文本(2024-06-23 161043).txt

文本(2024-06-23 161043).txt
recommend-type

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱函数.rar

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱故障诊断。为实现 VMD 和 MCKD 的参数自适应选择,采用粒子群优化算法对两种算法中的参数进行优化,确定适应度函数为包络谱峰值因子。该资源中包括了频谱函数和求包络谱函数
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响
recommend-type

ps -ef|grep smon

`ps -ef|grep smon` 是在Linux或Unix系统中常用的命令组合,它用于检查当前系统的进程状态(process status)。当你运行这个命令时,`ps -ef` 部分会列出所有活跃的进程(包括用户、PID、进程名称、CPU和内存使用情况等),`grep smon` 部分则会对这些结果进行筛选,只显示包含 "smon" 这个字符串的进程行。 `smon` 往往指的是Oracle数据库中的System Monitor守护进程,这个进程负责监控数据库的性能和资源使用情况。如果你看到这个进程,说明Oracle数据库正在运行,并且该进程是正常的一部分。