`timescale 1ns / 1ps module liushuideng( input clk, input rst_n, output reg [7:0] led ); reg [25:0] cnt; always @(posedge clk or negedge rst_n) if(!rst_n) cnt<=26'd0; else if(cnt==26'd25000000-1'd1) cnt<=26'd0; else cnt<=cnt+1'd1 ; reg clk_1hz; always @(posedge clk or negedge rst_n ) if (!rst_n) clk_1hz<=1'd0; else if(cnt==26'd25000000-1'd1) clk_1hz<=~clk_1hz; else clk_1hz<= clk_1hz; reg [7:0] count; always @(posedge clk_1hz or negedge rst_n ) if (!rst_n) count <=8'd0; else if (count==8'd23) count<=8'd0; else count<=count+1'd1; always @(posedge clk_1hz or negedge rst_n) if (!rst_n) led<=8'b1000_0001; else if (count == 8'd0) led<=8'b1000_0001; else if (count>=8'd0 && count<=8'd3) led<={led[4],led[7:5],led[2:0],led[3]}; else if (count == 8'd4) led<=8'b0001_1000; else if (count>=8'd4 && count<=8'd7) led<={led[6:4],led[7],led[0],led[3:1]}; else if (count == 8'd8) led<=8'b1000_0000; else if (count>=8'd8 && count <=8'd15) led<={led[0],led[7:1]}; else if (count>=8'd16 && count <=8'd23) led<={led[6:0],led[7]}; else led<=led; endmodule测试激励文件怎么写

时间: 2024-02-13 15:02:02 浏览: 28
以下是一个简单的 Verilog 激励文件示例,用于测试 liushuideng 模块: ``` `timescale 1ns / 1ps module liushuideng_tb(); reg clk; reg rst_n; wire [7:0] led; liushuideng dut(.clk(clk), .rst_n(rst_n), .led(led)); initial begin clk = 0; forever #5 clk = ~clk; end initial begin rst_n = 0; #100 rst_n = 1; #5000 $finish; end endmodule ``` 该激励文件定义了一个 liushuideng_tb 模块,该模块实例化了 liushuideng 模块,并为其连接了时钟信号 clk、复位信号 rst_n 和 LED 灯输出 led。在 initial 块中,时钟信号 clk 被定义为一个周期为 10 ns 的方波,并通过 forever 循环不断翻转。复位信号 rst_n 在初始时被设为 0,经过 100 ns 后被设为 1,模拟了一个下降沿复位的场景。最后,通过 #5000 延时使仿真停止,并使用 $finish 命令结束仿真。你可以根据需要修改激励文件的内容,以适应你的测试需求。
相关问题

代码为:module dut(clk,rst_n,rxd,rx_dv,txd,tx_en); input clk; input rst_n; input [7:0]rxd; input rx_dv; output [7:0]txd; output tx_en; reg[7:0] txd; reg tx_en; always @(posedge clk) begin if (!rst_n) begin txd <= 8'b0; tx_en <= 1'b0; end else begin txd <= rxd; tx_en <= rx_dv; end end endmodule

好的,基于您提供的代码,我可以为您编写UVM验证代码。下面是可能的实现方式: ``` `timescale 1ns / 1ns module dut(clk,rst_n,rxd,rx_dv,txd,tx_en); input clk; input rst_n; input [7:0]rxd; input rx_dv; output [7:0]txd; output tx_en; reg[7:0] txd; reg tx_en; always @(posedge clk) begin if (!rst_n) begin txd <= 8'b0; tx_en <= 1'b0; end else begin txd <= rxd; tx_en <= rx_dv; end end endmodule module dut_tb; // Declare the interface signals logic clk; logic rst_n; logic [7:0]rxd; logic rx_dv; logic [7:0]txd; logic tx_en; // Instantiate the DUT dut dut_inst( .clk(clk), .rst_n(rst_n), .rxd(rxd), .rx_dv(rx_dv), .txd(txd), .tx_en(tx_en) ); // Declare the UVM environment my_env env; // Declare the UVM agent my_agent agent; // Declare the UVM virtual interface my_vif vif; // Instantiate the UVM environment and agent initial begin env = my_env::type_id::create("env"); agent = my_agent::type_id::create("agent", env); end // Instantiate the UVM virtual interface and connect it to the DUT initial begin vif = my_vif::type_id::create("vif"); vif.clk = clk; vif.rst_n = rst_n; vif.rxd = rxd; vif.rx_dv = rx_dv; vif.txd = txd; vif.tx_en = tx_en; end // Connect the agent to the virtual interface initial begin agent.vif = vif; end // Start the test initial begin run_test(); end endmodule class my_env extends uvm_env; // Declare the components of the environment my_agent agent; // Override the build_phase method to create the agent function void build_phase(uvm_phase phase); super.build_phase(phase); agent = my_agent::type_id::create("agent", this); endfunction // Override the connect_phase method to connect the agent to the virtual interface function void connect_phase(uvm_phase phase); super.connect_phase(phase); agent.vif = vif; endfunction endclass class my_agent extends uvm_agent; // Declare the components of the agent my_driver driver; my_monitor monitor; // Declare the virtual interface my_vif vif; // Override the build_phase method to create the driver and monitor function void build_phase(uvm_phase phase); super.build_phase(phase); driver = my_driver::type_id::create("driver", this); monitor = my_monitor::type_id::create("monitor", this); endfunction // Override the connect_phase method to connect the driver and monitor to the virtual interface function void connect_phase(uvm_phase phase); super.connect_phase(phase); driver.vif = vif; monitor.vif = vif; endfunction endclass class my_driver extends uvm_driver #(my_pkt); // Declare the virtual interface my_vif vif; // Override the run_phase method to send packets to the DUT task run_phase(uvm_phase phase); super.run_phase(phase); // Send packets to the DUT endtask endclass class my_monitor extends uvm_monitor #(my_pkt); // Declare the virtual interface my_vif vif; // Override the run_phase method to monitor packets from the DUT task run_phase(uvm_phase phase); super.run_phase(phase); // Monitor packets from the DUT endtask endclass class my_pkt extends uvm_sequence_item; // Declare the properties of the packet // ... // Override the do_print method to print the packet function void do_print(uvm_printer printer); super.do_print(printer); // Print the packet endfunction endclass class my_vif extends uvm_vif; // Declare the signals of the virtual interface logic clk; logic rst_n; logic [7:0]rxd; logic rx_dv; logic [7:0]txd; logic tx_en; endclass ``` 这是一个简单的UVM测试框架,其中包含一个仿真环境、一个代理、一个驱动程序、一个监视器、一个数据包和一个虚拟接口。这个框架可以用于验证您提供的DUT模块。您需要根据实际情况进行修改和扩展。

`timescale 1ns / 1ps module pc_main( input clk, input rst, input wire [31:0] npc, output reg [31:0] pc ); reg state; always@(posedge clk or negedge rst)begin if(~rst) state <= 0; else state <= 1; end always@(posedge clk or negedge rst)begin if(~rst) pc <= 0; else pc <= state?npc:0; end endmodule

这是一个Verilog HDL语言编写的程序计数器模块(pc_main)。下面是对各个部分的解释: - clk:输入时钟端口,用于同步程序计数器的计数; - rst:输入复位端口,当高电平时,将程序计数器清零; - npc:输入端口,表示下一条指令的地址; - pc:输出端口,表示当前指令的地址; 其中,`timescale 1ns / 1ps`表示时间单位,1ns为时间单位,1ps为时间精度,即1ns内的时钟周期数。 在模块中定义了一个状态变量state,表示程序计数器的工作状态,当rst为高电平时,将state变量清零。 always@(posedge clk or negedge rst)begin...end语句表示在时钟上升沿或者复位信号下降沿时,根据rst的值,将程序计数器pc赋值。当rst为高电平时,将pc清零;当rst为低电平时,根据state的值,将pc赋值为npc或者0。

相关推荐

这两个Verilog代码可以放在一个.v文件中吗:1.timescale 1ns / 1ps module Top(clk,sw,led,flag, ADC_sdata, ADC_sclk,ADC_csn,slec_wei,slec_duan); input clk; input [3:0]sw; output reg [7:0] led; input flag; input ADC_sdata; output ADC_sclk,ADC_csn; output [7:0] slec_wei; output [7:0] slec_duan; wire [11:0] adc_res; wire adc_valid; wire [19:0]cout; always@(posedge clk)if(adc_valid) led<=adc_res[11:4]; PmodAD1 U0( .clk(clk), .rst(1’b0), .ADC_sdata(ADC_sdata), .ADC_sclk(ADC_sclk), .ADC_csn(ADC_csn), .adc_res(adc_res), .adc_valid(adc_valid) ); data_ad_pro U1( .sys_clk(clk), .rst_n(1’b1), .pre_data(adc_res[11:4]), .cout(cout) ); display U2( .sys_clk(clk), .rst_n(1’b1), .cout(cout), .sw(sw), .flag(flag), .slec_wei(slec_wei), .slec_duan(slec_duan) ); endmodule ———————2.module PmodAD1( clk,rst, ADC_sdata,ADC_sclk,ADC_csn,adc_res,adc_valid); input clk,rst, ADC_sdata; output reg ADC_sclk,ADC_csn; output reg [11:0] adc_res; output reg adc_valid; reg [7:0] cntr; always@(posedge clk) if(rst)cntr<=0;else if(cntr==34)cntr<=0;else cntr<=cntr+1; always@(posedge clk) case (cntr) 0: ADC_csn<=0; 33: ADC_csn<=1; endcase always@(posedge clk) case(cntr) 34,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,33:ADC_sclk<=1; default ADC_sclk<=0; endcase always@(posedge clk) case(cntr) 8: adc_res[11]<= ADC_sdata; 10:adc_res[10]<= ADC_sdata; 12:adc_res[9]<= ADC_sdata; 14:adc_res[8]<= ADC_sdata; 16:adc_res[7]<= ADC_sdata; 18:adc_res[6]<= ADC_sdata; 20:adc_res[5]<= ADC_sdata; 22:adc_res[4]<= ADC_sdata; 24:adc_res[3]<= ADC_sdata; 26:adc_res[2]<= ADC_sdata; 28:adc_res[1]<= ADC_sdata; 30:adc_res[0]<= ADC_sdata; endcase always@(posedge clk)adc_valid<=cntr==32; endmodule

module jsq_ctrl (clk,rst_n,data,en,sum,ENA,flag_sum,led); input clk; //50mhz周期20ns input rst_n; input [3:0] data; //按键值 input en; //按键的使能信号 //1ms output reg ENA; output reg [15:0] sum;//计算结果 output reg flag_sum; //结果是否有问题信号 output reg led; reg [15:0] mima; reg [2:0] cnt; reg [2:0] wrong; reg m; //对输入的键值进行同步处理 reg en1,en2; wire flag; always @ (posedge clk ,negedge rst_n) begin if (!rst_n) begin en1 <= 1'b0; en2 <= 1'b0; end else begin en1 <= en; en2 <= en1; end end assign flag = en1 &(~en2); //检测上升沿 //计算过程的执行 reg [2:0] state; reg [23:0] a; reg [23:0] sum1; reg flag_out; reg flag_en; //不需要转化的输出数据 always @ (posedge clk,negedge rst_n) begin if (!rst_n) begin a <= 24'd0; sum1 <= 24'd0; flag_out <= 1'b0; flag_sum <= 1'b0; flag_en <= 1'b0; cnt<=0; wrong<=0; ENA<=0; led<=1; m<=0; end else if (flag) begin if (data >= 4'd0 && data <= 4'h9) begin a <= {a[19:0],data}; sum1 <= {a[19:0],data}; flag_out <= 1'b1; flag_en <= 1'b1; end else if (data == 4'ha) //清零键 begin flag_out <= 1'b1; sum1 <= 24'd0; a <= 24'h0; flag_en <= 1'b0; end else if (data == 4'hb) //=键 begin if(!m) begin mima=sum1[15:0]; sum1 <= 24'd0; a <= 24'h0; m=1; flag_en <= 1'b1; flag_out <= 1'b1; end else if(sum1[15:0]==mima) begin led<=0; a <= 24'h0; wrong<=0; flag_en <= 1'b1; flag_out <= 1'b1; sum1 <= 24'd0; end else if(mima!=sum1[15:0]) begin if(wrong<2) begin a <= 24'h0; flag_en <= 1'b1; flag_out <= 1'b1; wrong<=wrong+1; sum1 <= 24'd0; end else begin a <= 24'h0; ENA<=1; wrong<=0; flag_en <= 1'b0; sum1<=0; flag_out <= 1'b1; end end end end else begin a <= a; sum1 <= sum1; flag_out <= 1'b0; flag_sum <= 1'b0; flag_en <= flag_en; end end //输出算数结果 always @ (posedge clk,negedge rst_n) begin if (!rst_n) sum <= 24'h0; else if (flag_en) sum <= sum1; else if (flag_out) begin sum[3:0] <= sum1 % 10; sum[7:4] <= sum1 / 10 % 10; sum[11:8] <= sum1 / 100 % 10; sum[15:12] <= sum1 / 1000 % 10; ENA <= ENA; end else sum <= sum; end endmodule

写出以下代码的testbench module decode8(clk_50m,rst_n,c,seg,sel,out,led); input[4:0] c; input clk_50m,rst_n; output reg[6:0]out;//共阳,0点亮 output reg[7:0]seg;//共阴,1点亮 output reg[2:0]sel;//位选 output reg[3:0] led; reg[31:0] timer; reg clk_1hz; always@(posedge clk_50m) begin if(~rst_n) begin timer<=0;clk_1hz<=0;end else if(timer==32'd24)//仿真时可调小 begin timer<=0;clk_1hz<=~clk_1hz;end else begin timer<=timer+1;clk_1hz<=clk_1hz;end end always@(c) if(c[4]==0) begin case(c) 5'b00000:begin led=4'b0000; out =7'b1000000; end //0 5'b00001:begin led=4'b0001; out =7'b1111001; end //1 5'b00010:begin led=4'b0010; out =7'b0100100; end //2 5'b00011:begin led=4'b0011; out =7'b0110000; end //3 5'b00100:begin led=4'b0100; out =7'b0011001; end //4 5'b00101:begin led=4'b0101; out =7'b0010010; end //5 5'b00110:begin led=4'b0110; out =7'b0000010; end //6 5'b00111:begin led=4'b0111; out =7'b1111000; end //7 5'b01000:begin led=4'b1000; out =7'b0000000; end //8 5'b01001:begin led=4'b1001; out =7'b0010000; end //9 5'b01010:begin led=4'b1010; out =7'b0001000; end //A 5'b01011:begin led=4'b1011; out =7'b0000011; end //B 5'b01100:begin led=4'b1100; out =7'b1000110; end //C 5'b01101:begin led=4'b1101; out =7'b0010001; end //D 5'b01110:begin led=4'b1110; out =7'b0000110; end //E 5'b01111:begin led=4'b1111; out =7'b0001110; end //F default:begin led=4'b0000; out =7'b1111111; end endcase end else begin led =4'b0000; out =7'b1111111;end always@(posedge clk_1hz) if(c[4]==1) begin case(sel) 3'b000:begin sel =3'b001; seg =8'b01110110; end //H 3'b001:begin sel =3'b010; seg =8'b01111001; end //E 3'b010:begin sel =3'b011; seg =8'b00111000; end //L 3'b011:begin sel =3'b100; seg =8'b00111000; end //L 3'b100:begin sel =3'b101; seg =8'b00111111; end //0 default: begin sel =3'b000; seg=8'b00000000; end endcase end else seg=8'b00000000; endmodule

最新推荐

recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。