crc_poly为什么是h1D

时间: 2023-12-30 09:03:20 浏览: 23
CRC(循环冗余校验)是一种数据校验的方法,它利用除法的原理来检测数据传输过程中是否出现错误。在计算CRC时,需要指定一个用于计算的多项式,这个多项式通常表示成一个16进制数。h1D表示的就是一个16进制数,它是一个比较常用的CRC多项式。CRC多项式的选取需要根据实际情况来确定,不同的CRC多项式对数据的校验效果也会有所影响。
相关问题

//XW_crc_p.v `pragma protect begin module DW_crc_p( data_in, crc_in, crc_ok, crc_out ); parameter integer data_width = 16; parameter integer poly_size = 16; parameter integer crc_cfg = 7; parameter integer bit_order = 3; parameter integer poly_coef0 = 4129; parameter integer poly_coef1 = 0; parameter integer poly_coef2 = 0; parameter integer poly_coef3 = 0; input [data_width-1:0] data_in; input [poly_size-1:0] crc_in; output crc_ok; output [poly_size-1:0] crc_out; `define DW_max_data_crc_1 (data_width>poly_size?data_width:poly_size) wire [poly_size-1:0] crc_in_inv; wire [poly_size-1:0] crc_reg; wire [poly_size-1:0] crc_out_inv; wire [poly_size-1:0] crc_chk_crc_in; reg [poly_size-1:0] crc_inv_alt; reg [poly_size-1:0] crc_polynomial; `include "bit_order_crc_function.inc" `include "bit_order_data_function.inc" `include "calculate_crc_w_in_function.inc" `include "calculate_crc_function.inc" `include "calculate_crc_crc_function.inc" generate //begin genvar bit_idx; reg [63:0] crc_polynomial64; reg [15:0] coef0; reg [15:0] coef1; reg [15:0] coef2; reg [15:0] coef3; assign coef0= poly_coef0; assign coef0= poly_coef1; assign coef0= poly_coef2; assign coef0= poly_coef3; assign crc_polynomial64 = {coef3, coef2, coef1, coef0}; assign crc_pollynomial = crc_polynomial64[poly_size-1:0]; case(crc_cfg/2) 0: assign crc_inv_alt = {poly_size{1'b0}}; 1: for(bit_idx = 0; bit_idx<poly_sizel bit_idx=bit_idx+1) assign crc_inv_alt[bit_idx] = (bit_idx % 2)? 1'b0:1'b1; 2: for(bit_idx=0; bit_idx<poly_size; bit_idx=bit_idx+1) assign crc_inv_alt[bit_idx] = (bit_idx % 2)?1'b1:1'b0; 3: assign crc_inv_alt = { poly_size{1'b1}}; endcase endgenerate assign crc_in_inv = bit_order_crc(crc_in) ^ crc_inv_alt; assign crc_reg = calculate_crc(bit_order_data(data_in)); assign crc_out_inv = crc_reg; assign crc_out = bit_order_crc(crc_out_inv)^ crc_inv_alt; assign crc_chk_crc_in = calculate_crc_crc(crc_reg, crc_in_inv); assign crc_ok = (crc_chk_crc_in ==0); `undef DW_max_data_crc_1 endmodule `pragma protect end can you write a testbench for this piece of CRC verilog code so that this verilog file and the testbench can be used togerther by vcs to verify the correctness of this verilog file?

Sure, here's a basic testbench for the `DW_crc_p` module: ``` `timescale 1ns/1ps module testbench; // Inputs reg [15:0] data_in; reg [15:0] crc_in; // Outputs wire crc_ok; wire [15:0] crc_out; // Instantiate the DUT DW_crc_p dut ( .data_in(data_in), .crc_in(crc_in), .crc_ok(crc_ok), .crc_out(crc_out) ); initial begin // Initialize inputs data_in = 16'h1234; crc_in = 16'h5678; // Wait for a few cycles #10; // Change inputs data_in = 16'h5678; crc_in = 16'h1234; // Wait for a few cycles #10; // Add more test cases as needed // Check outputs $display("crc_ok = %b, crc_out = %h", crc_ok, crc_out); end endmodule ``` This testbench simply initializes the `data_in` and `crc_in` inputs, waits for a few cycles, changes the inputs, waits for a few more cycles, and then checks the `crc_ok` and `crc_out` outputs using the `$display` system task. You can add more test cases as needed by changing the input values and checking the output values. To run the testbench with the `DW_crc_p` module, you can use the following command: ``` vcs -debug testbench.v DW_crc_p.v ``` This will compile both the testbench and the `DW_crc_p` module, and then run the simulation. You can view the simulation results using the `dve` GUI or by examining the output in the terminal window.

uint32_t update_crc_32(const uint8_t* Crc_DataPtr, uint32_t Crc_Length, uint32_t Crc_StartValue32, bool Crc_IsFirstCall) 函数实现,计算1024K数据举例

以下是一个基于标准CRC-32算法的C语言实现,用于计算长度为1024K(1MB)的数据的CRC-32校验值: ```c #include <stdint.h> #define CRC32_POLYNOMIAL 0xEDB88320 uint32_t update_crc_32(const uint8_t* Crc_DataPtr, uint32_t Crc_Length, uint32_t Crc_StartValue32, bool Crc_IsFirstCall) { static uint32_t Crc_Table[256]; static bool Crc_Table_Initialized = false; uint32_t Crc_Value = Crc_StartValue32 ^ 0xFFFFFFFF; uint32_t Crc_Index; uint32_t Crc_Xor; if (!Crc_Table_Initialized || Crc_IsFirstCall) { // Initialize the CRC table for (Crc_Index = 0; Crc_Index < 256; Crc_Index++) { uint32_t Crc_Table_Value = Crc_Index; for (int Crc_Bit = 0; Crc_Bit < 8; Crc_Bit++) { if (Crc_Table_Value & 1) { Crc_Table_Value = (Crc_Table_Value >> 1) ^ CRC32_POLYNOMIAL; } else { Crc_Table_Value >>= 1; } } Crc_Table[Crc_Index] = Crc_Table_Value; } Crc_Table_Initialized = true; } for (uint32_t Crc_Data_Index = 0; Crc_Data_Index < Crc_Length; Crc_Data_Index++) { Crc_Xor = (Crc_Value ^ Crc_DataPtr[Crc_Data_Index]) & 0xFF; Crc_Value = (Crc_Value >> 8) ^ Crc_Table[Crc_Xor]; } return Crc_Value ^ 0xFFFFFFFF; } int main() { // Example usage: calculate the CRC-32 of a 1MB block of data const uint32_t Crc_StartValue32 = 0xFFFFFFFF; const uint32_t Crc_Length = 1024 * 1024; // 1MB uint8_t Crc_Data[Crc_Length]; // TODO: fill Crc_Data with the data to be checksummed uint32_t Crc_Result = update_crc_32(Crc_Data, Crc_Length, Crc_StartValue32, true); printf("CRC-32: 0x%08X\n", Crc_Result); return 0; } ``` 该实现使用了一个静态数组来存储CRC-32表,以便在多次调用`update_crc_32()`时重复使用。可以将`Crc_IsFirstCall`参数设置为`true`,以强制重新初始化CRC表。如果不需要重新初始化表,则应将此参数设置为`false`。 你只需要将`TODO: fill Crc_Data with the data to be checksummed`这一行替换为读取数据并将其存储在`Crc_Data`数组中的代码即可。

相关推荐

最新推荐

recommend-type

CRC4的C语言实现代码

这里给大家分享一个函数,实现DSP通讯中的CRC4校验 。特征码为0x13。
recommend-type

使用C语言实现CRC校验的方法

本篇文章是对使用C语言实现CRC校验的方法进行了详细的分析介绍,需要的朋友参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、