new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns]
时间: 2024-03-20 09:44:01 浏览: 61
这段代码的SQL实现如下:
```
-- 对 new_df 进行处理
WITH new_df_filled AS (
SELECT
*,
CASE WHEN col1 IS NULL THEN 'default_value' ELSE col1 END AS col1_filled,
CASE WHEN col2 IS NULL THEN 'default_value' ELSE col2 END AS col2_filled,
...,
CASE WHEN coln IS NULL THEN 'default_value' ELSE coln END AS coln_filled
FROM new_df
),
new_df_processed AS (
SELECT
col1_filled,
col2_filled,
...,
coln_filled,
0 AS row_priority
FROM new_df_filled
),
-- 对 older_df 进行处理
older_df_filled AS (
SELECT
*,
CASE WHEN col1 IS NULL THEN 'default_value' ELSE col1 END AS col1_filled,
CASE WHEN col2 IS NULL THEN 'default_value' ELSE col2 END AS col2_filled,
...,
CASE WHEN coln IS NULL THEN 'default_value' ELSE coln END AS coln_filled
FROM older_df
),
older_df_processed AS (
SELECT
col1_filled,
col2_filled,
...,
coln_filled,
1 AS row_priority
FROM older_df_filled
)
-- 合并两个DataFrame
SELECT
col1_filled,
col2_filled,
...,
coln_filled,
row_priority
FROM (
SELECT * FROM new_df_processed UNION ALL SELECT * FROM older_df_processed
) AS merged_df
WHERE (col1_filled, col2_filled, ..., coln_filled) IN (
SELECT col1_filled, col2_filled, ..., coln_filled
FROM new_df_processed
UNION
SELECT col1_filled, col2_filled, ..., coln_filled
FROM older_df_processed
WHERE NOT (col1_filled, col2_filled, ..., coln_filled) IN (
SELECT col1_filled, col2_filled, ..., coln_filled
FROM new_df_processed
)
)
```
其中,`new_df`和`older_df`分别是原始的DataFrame,`new_df_cols`和`old_df_cols`是DataFrame中的列名列表,`total`是总列数,`key_columns`是用于合并两个DataFrame的关键列。首先,对`new_df`和`older_df`分别进行处理,填充空列并添加`row_priority`列。然后,将两个DataFrame合并,并使用`WHERE`子句过滤出唯一的行。最后,选择填充后的列和`row_priority`列。需要注意的是,这段代码中的`NOT IN`子句可能会对性能产生负面影响,可以考虑使用`LEFT JOIN`和`NULL`判断来代替。
阅读全文