给入两个ORBSLAM运动轨迹txt,使轨迹对齐输出轨迹txt文件代码C++
时间: 2023-12-14 14:36:00 浏览: 222
以下是一个简单的C++代码示例,可以将两个ORBSLAM运动轨迹文件对齐,并将结果输出到新的轨迹文件中。代码中使用了Eigen库来进行矩阵计算。
```cpp
#include <iostream>
#include <fstream>
#include <Eigen/Dense>
using namespace Eigen;
// 定义一个结构体来存储轨迹中的每个位姿信息
struct Pose
{
double timestamp;
Vector3d position;
Quaterniond orientation;
};
// 从文件中读取轨迹数据
bool readTrajectory(const std::string& filename, std::vector<Pose>& trajectory)
{
std::ifstream file(filename);
if (!file.is_open())
{
std::cerr << "Error: Cannot open file " << filename << std::endl;
return false;
}
while (!file.eof())
{
Pose pose;
file >> pose.timestamp >> pose.position.x() >> pose.position.y() >> pose.position.z() >> pose.orientation.w() >> pose.orientation.x() >> pose.orientation.y() >> pose.orientation.z();
if (file.good()) {
trajectory.push_back(pose);
}
}
file.close();
return true;
}
// 将对齐后的轨迹数据写入文件
bool writeTrajectory(const std::string& filename, const std::vector<Pose>& trajectory)
{
std::ofstream file(filename);
if (!file.is_open())
{
std::cerr << "Error: Cannot open file " << filename << std::endl;
return false;
}
for (const auto& pose : trajectory)
{
file << pose.timestamp << " " << pose.position.x() << " " << pose.position.y() << " " << pose.position.z() << " " << pose.orientation.w() << " " << pose.orientation.x() << " " << pose.orientation.y() << " " << pose.orientation.z() << std::endl;
}
file.close();
return true;
}
int main(int argc, char** argv)
{
if (argc != 4)
{
std::cerr << "Usage: align_trajectory <trajectory1.txt> <trajectory2.txt> <output.txt>" << std::endl;
return -1;
}
// 读取两个轨迹文件
std::vector<Pose> trajectory1, trajectory2;
if (!readTrajectory(argv[1], trajectory1) || !readTrajectory(argv[2], trajectory2))
{
return -1;
}
// 计算两个轨迹的平移和旋转矩阵
Matrix3d R;
Vector3d t;
int N = std::min(trajectory1.size(), trajectory2.size());
MatrixXd P1(3, N), P2(3, N);
for (int i = 0; i < N; i++)
{
P1.col(i) = trajectory1[i].position;
P2.col(i) = trajectory2[i].position;
}
Vector3d centroid1 = P1.rowwise().mean();
Vector3d centroid2 = P2.rowwise().mean();
P1.colwise() -= centroid1;
P2.colwise() -= centroid2;
Matrix3d H = P1 * P2.transpose();
JacobiSVD<MatrixXd> svd(H, ComputeFullU | ComputeFullV);
Matrix3d U = svd.matrixU();
Matrix3d V = svd.matrixV();
R = V * U.transpose();
if (R.determinant() < 0) {
R.col(2) *= -1;
}
t = centroid2 - R * centroid1;
// 对齐第二个轨迹并输出
std::vector<Pose> aligned_trajectory;
for (const auto& pose : trajectory2)
{
Pose aligned_pose;
aligned_pose.timestamp = pose.timestamp;
aligned_pose.position = R * pose.position + t;
aligned_pose.orientation = R * pose.orientation;
aligned_trajectory.push_back(aligned_pose);
}
if (!writeTrajectory(argv[3], aligned_trajectory))
{
return -1;
}
std::cout << "Done!" << std::endl;
return 0;
}
```
使用方法:将以上代码保存为`align_trajectory.cpp`,并使用以下命令进行编译:
```
g++ align_trajectory.cpp -o align_trajectory -std=c++11 -I /path/to/eigen
```
其中,`/path/to/eigen`是Eigen库的路径,需要根据实际情况进行修改。编译成功后,可以使用以下命令运行程序:
```
./align_trajectory trajectory1.txt trajectory2.txt output.txt
```
其中,`trajectory1.txt`和`trajectory2.txt`分别是要对齐的两个轨迹文件,`output.txt`是输出的对齐后的轨迹文件。
阅读全文