设 x + y + z <=30 ,x * 5.75 >= 30 ,y * 3.60>=30 ,z * 1.46>=30,求,x,y,z的取值范围
时间: 2023-06-01 08:04:35 浏览: 119
由 x * 5.75 >= 30 可得 x >= 30 / 5.75 ≈ 5.22,因此 x 的取值范围为 [6, 30]。
同理可得 y 的取值范围为 [9, 30],z 的取值范围为 [21, 30]。
相关问题
设 x + y + z =<30 ,x * 5.75 >= 30 ,y * 3.60>=30 ,z * 1.46>=30,求,x,y,z的取值范围
由题可得:
x≤30
y≤30
z≤30
x≥30/5.75≈5.22
y≥30/3.60≈8.33
z≥30/1.46≈20.55
综上所述,x的取值范围为5.22≤x≤30,y的取值范围为8.33≤y≤30,z的取值范围为20.55≤z≤30。
model: sets: row/1..6/:x,y,d; col/1..2/; pp(col,row):ans; endsets data: d=3,5,4,7,6,11; x=1.25,8.75,0.5,5.75,3,7.25; y=1.25,0.75,4.75,5,6.5,7.75; enddata min=@sum(row(i):@sqrt((x(i)-5)^2+(y(i)- 1)^2)*ans(1,i)+@sqrt((x(i)-2)^2+(y(i)-7)^2)*ans(2,i)); @sum(row(i):ans(1,i))<=20; @sum(row(i):ans(2,i))<=20; @for(row(i):ans(1,i)+ans(2,i)>=d(i)); end帮我把以上代码翻译成python语言
以下是将该模型翻译成Python代码的示例:
```python
import numpy as np
from scipy.optimize import minimize
# 定义数据
d = np.array([3, 5, 4, 7, 6, 11])
x = np.array([1.25, 8.75, 0.5, 5.75, 3, 7.25])
y = np.array([1.25, 0.75, 4.75, 5, 6.5, 7.75])
# 定义目标函数
def objective(ans):
sum1 = np.sum([np.sqrt((x[i]-5)**2 + (y[i]-1)**2) * ans[i,0] for i in range(6)])
sum2 = np.sum([np.sqrt((x[i]-2)**2 + (y[i]-7)**2) * ans[i,1] for i in range(6)])
return sum1 + sum2
# 定义约束条件
def constraint1(ans):
return np.sum(ans[:,0]) - 20
def constraint2(ans):
return np.sum(ans[:,1]) - 20
def constraint3(ans):
return np.sum(ans[:,0] + ans[:,1] >= d)
# 定义初始值、变量取值范围、约束条件
x0 = np.zeros((6,2))
bnds = [(0, None), (0, None)] * 6
cons = [{'type': 'ineq', 'fun': constraint1},
{'type': 'ineq', 'fun': constraint2},
{'type': 'ineq', 'fun': constraint3}]
# 求解非线性规划问题
solution = minimize(objective, x0, bounds=bnds, constraints=cons)
# 打印求解结果
print(solution)
```
需要注意的是,将GAMS代码翻译成Python代码时,需要对变量、约束条件等进行适当的调整。同时,GAMS中的集合和数据定义在Python中可以使用NumPy数组或Pandas数据框等数据结构来表示。
阅读全文