import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10) ) X = torch.randn((1, 3, 32, 32), dtype=torch.float32) for layer in net: X = layer(X) print(layer.__class__.__name__, 'output shape:\t', X.shape) batch_size = 64 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=32) lr, num_epochs = 0.01, 100 d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()),怎样调整参数,使得test acc达到90%以上,并且能够快速的跑出图像来?
时间: 2023-10-06 16:04:39 浏览: 51
要调整模型参数以提高测试准确率,可以尝试以下几个方法:
1. 调整学习率:将学习率逐步降低,可以让模型更好地收敛,提高准确率。
2. 调整优化器:尝试不同的优化器,如Adam或SGD等,可以提高模型训练的速度和准确率。
3. 调整网络结构:可以尝试增加或减少卷积层、全连接层或其他类型的层,调整卷积核大小、步幅和填充等参数,以提高模型的性能。
4. 数据增强:使用数据增强技术,如随机裁剪、随机翻转、随机旋转和颜色抖动等,可以增加模型的鲁棒性和泛化能力,提高准确率。
5. 正则化:使用正则化技术,如L1、L2正则化或Dropout等,可以减少过拟合,提高模型的性能。
快速跑出图像来可以尝试以下几个方法:
1. 使用GPU加速:使用GPU加速训练可以大大提高训练速度,快速跑出图像。
2. 减少批次大小:减少批次大小可以减少每次迭代的计算量,提高训练速度。
3. 减少训练轮数:如果准确率已经达到了要求,可以适当减少训练轮数,以节省时间。
相关问题
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
def __init__(self): super().__init__() self._initial = nn.Sequential( nn.Conv2d(3, 32, kernel_size=9, stride=1, padding=4, padding_mode='reflect'), nn.InstanceNorm2d(32, affine=True), nn.ReLU(inplace=True), ) self._down_blocks = nn.Sequential( DownBlock(32, 64, kernel_size=3), DownBlock(64, 128, kernel_size=3), ) self._residual_blocks = nn.Sequential( *[ResidualBlock(128, kernel_size=3) for _ in range(5)] ) self._up_blocks = nn.Sequential( UpBlock(128, 64, kernel_size=3), UpBlock(64, 32, kernel_size=3), ) self._final = nn.Conv2d(32, 3, kernel_size=9, stride=1, padding=4, padding_mode='reflect') def forward(self, x: Tensor) -> Tensor: x = self._initial(x) x = self._down_blocks(x) x = self._residual_blocks(x) x = self._up_blocks(x) x = self._final(x) x = torch.sigmoid(x) return x
这段代码是一个基于深度学习的图像处理模型,使用了卷积神经网络和残差网络来实现图像的去噪和修复。其中包含了初始卷积层、下采样卷积层、残差块和上采样卷积层,以及最终的卷积层用于输出修复后的图像。在前向传播时,输入图像经过多层卷积和非线性变换后得到修复后的图像。最后通过 sigmoid 函数将像素值限制在 0~1 范围内。
阅读全文