pandas按某一列排序
时间: 2023-09-14 21:11:47 浏览: 78
可以使用`sort_values()`方法按照某一列来排序pandas DataFrame。
以下是一个示例:
```python
import pandas as pd
# 创建一个示例DataFrame
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 34, 19, 45],
'score': [80, 65, 90, 75]}
df = pd.DataFrame(data)
# 按照年龄列从小到大排序
df = df.sort_values('age')
print(df)
```
输出:
```
name age score
2 Charlie 19 90
0 Alice 25 80
1 Bob 34 65
3 David 45 75
```
在这个示例中,我们使用`sort_values()`方法按照`age`列从小到大排序了DataFrame。可以看到,结果DataFrame的第一行是年龄最小的人。
相关问题
pandas 按照某一列排序
你可以使用 Pandas 中的 `sort_values()` 方法来按照某一列对 DataFrame 进行排序。以下是一个示例:
```python
import pandas as pd
# 创建一个示例 DataFrame
data = {'Name': ['John', 'Emma', 'Alex', 'Jessica'],
'Age': [28, 24, 32, 29],
'Salary': [50000, 60000, 55000, 45000]}
df = pd.DataFrame(data)
# 按照 'Salary' 列进行升序排序
df_sorted = df.sort_values('Salary')
print(df_sorted)
```
这将按照 'Salary' 列的值对 DataFrame 进行升序排序,并输出排序后的结果。你可以根据自己的需求选择要排序的列。
pandas根据某一列排序
可以使用`sort_values()`函数对DataFrame根据某一列进行排序,例如:
```python
import pandas as pd
# 创建DataFrame
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 20]})
# 根据age列进行升序排序
df = df.sort_values(by='age')
print(df)
```
输出结果为:
```
name age
2 Charlie 20
0 Alice 25
1 Bob 30
```
如果要进行降序排序,可以在`sort_values()`函数中加上`ascending=False`参数,例如:
```python
import pandas as pd
# 创建DataFrame
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 20]})
# 根据age列进行降序排序
df = df.sort_values(by='age', ascending=False)
print(df)
```
输出结果为:
```
name age
1 Bob 30
0 Alice 25
2 Charlie 20
```
阅读全文
相关推荐















