用VGG块来构建一个网络模型,并使用残差结构,使用pytorch实现
时间: 2023-03-02 18:04:58 浏览: 104
好的,我可以帮助你在PyTorch中实现一个使用VGG块和残差结构的网络模型。
首先,需要导入必要的库:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,我们可以定义一个VGG块,它将包含多个卷积层和池化层:
```
class VGGBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, act_func=nn.ReLU(inplace=True)):
super(VGGBlock, self).__init__()
self.act_func = act_func
self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(middle_channels)
self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.act_func(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.act_func(out)
return out
```
接下来,我们可以定义一个使用残差结构的网络模型:
```
class ResNet(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3)
self.bn1 = nn.BatchNorm2d(64)
self.act_func = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(3, 2, 1)
self.layer1 = self._make_layer(64, 128, 2)
self.layer2 = self._make_layer(128, 256, 2)
self.layer3 = self._make_layer(256, 512, 2)
self.layer4 = self._make_layer(512, 512, 2)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.fc = nn.Linear(512 * 7 * 7, num_classes)
def _make_layer(self, in
阅读全文