用VGG块和残差结构来构建一个网络模型,使用pytorch实现
时间: 2023-03-02 10:04:57 浏览: 133
您好!您可以使用 PyTorch 实现 VGG 块和残差结构构建的网络模型。
首先,我们需要实现 VGG 块,这是一种由多个卷积层和池化层组成的基本单元。您可以使用 PyTorch 的 `nn` 模块实现这个单元,如下所示:
```
import torch.nn as nn
class VGGBlock(nn.Module):
def __init__(self, in_channels, out_channels, pooling=True):
super(VGGBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
self.pooling = pooling
if self.pooling:
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(x)
if self.pooling:
x = self.pool(x)
return x
```
然后,您可以使用多个 VGG 块构建整个网络:
```
class VGGNet(nn.Module):
def __init__(self, num_classes=10):
super(VGGNet, self).__init__()
self.features = nn.Sequential(
VGGBlock(3, 64),
VGGBlock(64, 128),
VGGBlock(128, 256),
VGGBlock(256, 512),
VGGBlock(512, 512)
)
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
阅读全文