用pytorch,使用VGG块与残差结构搭建一个网络模型
时间: 2023-03-02 10:03:58 浏览: 129
pytorch网络模型
为了使用 PyTorch 搭建 VGG 块和残差结构的网络模型,您可以执行以下步骤:
1. 导入所需的 PyTorch 库。
2. 定义 VGG 块,其中包含多个卷积层和最大池化层。
3. 定义残差结构,其中包含跳过连接和残差块。
4. 定义整个网络模型,将 VGG 块和残差结构组合起来。
5. 定义损失函数和优化器。
6. 训练网络模型。
代码示例:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class VGGBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, act_func=nn.ReLU(True)):
super(VGGBlock, self).__init__()
self.act_func = act_func
self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(middle_channels)
self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.act_func(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.act_func(out)
return out
class ResidualBlock(nn.Module):
def __init__(self, channels, act_func=nn.ReLU(True)):
super(ResidualBlock, self).__init__()
self.act_func = act_func
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
阅读全文