使用pytorch,帮我使用VGG块与残差结构组合搭建一个网络模型
时间: 2023-03-02 20:58:37 浏览: 118
好的,我来帮助您使用 PyTorch 搭建一个网络模型,结合 VGG 块和残差结构。
首先,我们需要定义 VGG 块,并使用多个这样的块组合成更深的网络。下面是一个 VGG 块的定义:
```
import torch.nn as nn
import torch.nn.functional as F
class VGGBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, act_func=nn.ReLU(inplace=True)):
super(VGGBlock, self).__init__()
self.act_func = act_func
self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(middle_channels)
self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.act_func(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.act_func(out)
return out
```
接下来,我们需要定义残差块,下面是一个残差块的定义:
```
class ResidualBlock(nn.Module):
def __init__(self, channels, act_func=nn.ReLU(inplace=True)):
super(ResidualBlock, self).__init__()
self.act_func = act_func
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.act_func(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.act_func(out)
out += residual
return out
```
最后
阅读全文