UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
时间: 2024-02-28 14:53:06 浏览: 149
这个警告信息的意思是在某些标签中,模型预测的样本数量为0,导致计算精确率和F1-score时出现了分母为0的情况,因此这些指标被设置为0.0。这通常发生在多分类任务中,其中某些类别的样本数量较少,或者是在样本不平衡的情况下。
为了解决这个问题,可以使用`zero_division`参数来控制分母为0的情况。该参数默认为False,表示将分母为0的情况视为正常情况,将精确率和F1-score设置为0.0。如果将该参数设置为True,则分母为0的情况将被视为特殊情况,将精确率和F1-score设置为1.0。
可以按照以下方式设置`zero_division`参数:
```python
from sklearn.metrics import precision_score, recall_score, f1_score
# 设置 zero_division 参数为 1,即分母为 0 时,将精确率和F1-score设置为1.0
precision = precision_score(y_true, y_pred, average='macro', zero_division=1)
recall = recall_score(y_true, y_pred, average='macro', zero_division=1)
f1 = f1_score(y_true, y_pred, average='macro', zero_division=1)
```
通过设置`zero_division`参数,可以避免出现UndefinedMetricWarning警告,同时可以保证在样本数量较少或不平衡的情况下,精确率和F1-score的计算结果更加稳定。
阅读全文