m_interval += Time.deltaTime;为什么是+=

时间: 2024-04-23 17:25:39 浏览: 23
`m_interval += Time.deltaTime` 是将 `m_interval` 的值加上 `Time.deltaTime` 的值,然后再将结果赋值给 `m_interval`。这里使用 `+=` 是因为这个表达式需要在每一帧中累加时间间隔,而不是用一个固定值覆盖原来的值。因此需要将 `Time.deltaTime` 不断累加到 `m_interval` 中,以便在下一帧使用。
相关问题

m_interval += Time.deltaTime;是什么意思

`Time.deltaTime` 是 Unity 引擎中的一个静态属性,用于获取上一帧和本帧之间的时间间隔(单位为秒)。它表示了游戏运行的当前帧所花费的时间,可以用于计算物体的运动、旋转、缩放等操作,以及控制游戏逻辑的执行速度。 `m_interval += Time.deltaTime` 则表示将每帧的时间间隔累加到变量 `m_interval` 中。通常情况下,我们可以使用这个变量来实现一些需要按照一定时间间隔执行的逻辑,比如定时器、周期性更新等等。当 `m_interval` 的值达到一定阈值时,就可以执行相应的逻辑。 需要注意的是,`Time.deltaTime` 返回的值可能会受到计算机性能和帧率等因素的影响,因此在使用时需要进行一定的调整和优化,避免出现不稳定的情况。

void Update() { m_interval += Time.deltaTime; if (m_interval >= 0.5f) { m_interval -= 0.5f; var time = IBSceneManager.Instance.CurrentDateTime; // 设定日期 if (m_dateText != null) { if (m_lastDateTime.Day != time.Day) { m_dateText.text = GetDate(); m_lastDateTime = time; } } // 设定时间 if (m_timeText != null) { if (m_lastDateTime.Second != time.Second) { m_timeText.text = GetTime(); m_lastDateTime = time; } } } }是什么意思

这段代码是一个在Unity引擎中的MonoBehaviour脚本中的Update()函数,它会每一帧被调用一次。该函数中的代码实现了一个计时器,每隔0.5秒更新UI元素上的当前日期和时间,其中: - m_interval是一个计时器变量,会随着每一帧的时间变化而增加。 - 如果m_interval的值大于等于0.5秒,说明已经过了0.5秒,于是就更新日期和时间的UI元素。 - GetDate()和GetTime()是两个用来获取当前日期和时间的函数。 - m_lastDateTime是用来记录上一次更新日期和时间的时间点的变量。 具体实现中,日期和时间的UI元素分别由m_dateText和m_timeText两个变量表示。如果当前的日期和上一次记录的日期不同,说明已经跨天了,于是就更新日期的UI元素,并把当前日期记录到m_lastDateTime中。同理,如果当前的秒数和上一次记录的秒数不同,说明已经过了一秒,于是就更新时间的UI元素,并把当前时间记录到m_lastDateTime中。

相关推荐

public class DateTimeText : MonoBehaviour { public StringBuilder StrBuilder { get; set; } = new StringBuilder(); public Text m_dateText; public Text m_timeText; public Text m_weekText; DateTime m_lastDateTime; public DateTime CurrentDateTime { get; private set; } = DateTime.Now; void Start() { if (m_dateText != null) { m_dateText.text = GetDate(); } m_lastDateTime = DateTime.Now; } private string GetDate() { return CurrentDateTime.ToString(DateTimeFormat.DateFormat); } private string GetTime() { return CurrentDateTime.ToString(DateTimeFormat.TimeFormat); } private string GetWeek() { return CurrentDateTime.ToString("dddd"); } float m_interval = 0; void Update() { CurrentDateTime=DateTime.Now; m_interval += Time.deltaTime; if (m_interval >= 0.5f) { m_interval -= 0.5f; DateTime time = CurrentDateTime; if (m_dateText != null) { if (m_lastDateTime.Day != time.Day) { m_dateText.text = GetDate(); m_lastDateTime = time; } } if (m_timeText != null) { if (m_lastDateTime.Second != time.Second) { m_timeText.text = GetTime(); m_lastDateTime = time; } } if (m_weekText!=null) { if (m_lastDateTime.DayOfWeek!=time.DayOfWeek) { m_weekText.text = GetWeek(); m_lastDateTime = time; } } } } } public class DateTimeFormat { public const string Moday = "Moday"; public const string Tuesday = "Tuesday"; public const string Wednesday = "Wednesday"; public const string Thursday = "Thursday"; public const string Friday = "Friday"; public const string Saturday = "Saturday"; public const string Sunday = "Sunday"; public const string DateFormat = "yyyy/MM/dd"; public const string TimeFormat = "HH:mm:ss"; }这段代码显示不了星期数,是什么问题,请详细说下

程序提示AttributeError: 'ImageThread' object has no attribute '_dgl',优化程序 def __init__(self, pipeline, color_label, depth_label, interval, color_photo_dir, depth_photo_dir): super().__init__() self.pipeline = pipeline self.color_label = color_label self.depth_label = depth_label self.is_running = True self.interval = interval self.color_photo_dir = color_photo_dir self.depth_photo_dir = depth_photo_dir self.saved_color_photos = 0 self.saved_depth_photos = 0 def save_photo(self, color_image, depth_image): # 保存彩色图和深度图 filename = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-{}.bmp".format(self.saved_color_photos)) color_image.save(os.path.join(self.color_photo_dir, filename), "BMP") depth_image.save(os.path.join(self.depth_photo_dir, filename), "BMP") # print(self.color_photo_dir) # 更新已保存照片数量标签 self.saved_color_photos += 1 self.saved_depth_photos += 1 self.saved_color_photos_signal.emit(self.saved_color_photos) self.saved_depth_photos_signal.emit(self.saved_depth_photos) def run(self): ROT = 3 while self.is_running: # 从相机获取彩色图和深度图 frames = self.pipeline.wait_for_frames() color_frame = frames.get_color_frame() depth_frame = frames.get_depth_frame() depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # 转换成 Qt 图像格式 depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) # 将深度图像转换为伪彩色图像 color_image = QImage(color_image, color_image.shape[1], color_image.shape[0], color_image.shape[1] * 3, QImage.Format_RGB888) depth_colormap = QImage(depth_colormap, depth_colormap.shape[1], depth_colormap.shape[0], depth_colormap.shape[1] * 3, QImage.Format_RGB888) # 显示图像 self.color_label.setPixmap(QPixmap.fromImage(color_image)) self.depth_label.setPixmap(QPixmap.fromImage(depth_colormap)) v = self._dgl.qpin(ROT) if len(v) > 0: self._count += sum(v) if self._count > self._inspect_step: self.save_photo(color_image, depth_colormap) self._count -= self._inspect_step

import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进

最新推荐

recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

sja1311.x86_64.tar.gz

SQLyong 各个版本,免费下载 SQLyog是业界著名的Webyog公司出品的一款简洁高效、功能强大的图形化MySQL数据库管理工具。使用SQLyog可以快速直观地让您从世界的任何角落通过网络来维护远端的MySQL数据库。
recommend-type

debugpy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、