matlab用wavread和wavwrite完成(1)编写程序,读入 ks.wav,并进行播放,观察数据格式。假设音频通过一个 离散时间系统,其单位样值响应为 h(n)。h(n) 已保存于 hn.mat。求零状态响 应y(n),并保存为 y.wav。 1 播放 y.wav,感觉声音的变化。 2 记录零状态响应左声道的 y(20000),y(20001)。 (2) 假设音频在传输中受到加性干扰。干扰为 4500Hz,4550Hz,  4600Hz,,...4950Hz 等 10 个间隔 50Hz 的余弦波(注意所列的频率是连续信号的 频率)。这 10 个余弦波的振幅是随机的(但对于每一个频率,假设左右声道的 干扰的振幅相同),以均值 0,方差 0.01 的高斯随机数获得 10 个余弦波的振幅。 10个余弦波的初始相位是[0,2π) 间的均匀分布随机数(左右声道的初始相位可 以不同)。 1 编写程序,读入 myvoice.wav,加上干扰,保存音频至 noisy.wav。 播放干扰前和干扰后的音频,有什么变化? 2 使用 analyze 函数绘制干扰前和干扰后声音的功率谱,记录并进行 分析。

时间: 2024-02-09 11:09:35 浏览: 26
好的,下面是一些关于matlab的wavread和wavwrite的基本使用方法: 1. 读取wav文件并播放: ```matlab % 读取wav文件 [x, Fs] = wavread('ks.wav'); % 播放音频 sound(x, Fs); ``` 2. 保存音频为wav文件: ```matlab % 写入wav文件 wavwrite(y, Fs, 'y.wav'); ``` 3. 计算零状态响应: ```matlab % 读取h(n) load('hn.mat', 'h'); % 计算零状态响应 y = conv(x, h); ``` 4. 播放零状态响应并记录左声道的y(20000)和y(20001): ```matlab % 播放零状态响应 sound(y, Fs); % 记录y(20000)和y(20001) y_left = y(20000:20001, 1); ``` 5. 加入干扰并保存为noisy.wav: ```matlab % 读入myvoice.wav [x, Fs] = wavread('myvoice.wav'); % 生成10个干扰信号 f = 4500:50:4950; % 干扰频率 A = sqrt(0.01)*randn(10, 1); % 干扰信号振幅,均值为0,方差为0.01 phi = 2*pi*rand(10, 1); % 干扰信号初始相位,均匀分布在[0, 2π)间 % 生成干扰信号 t = 0:1/Fs:(length(x)-1)/Fs; d = zeros(length(x), 2); for i = 1:length(f) d(:, 1) = d(:, 1) + A(i)*cos(2*pi*f(i)*t + phi(i)); d(:, 2) = d(:, 1); end % 加入干扰信号 y = x + d; % 保存为noisy.wav wavwrite(y, Fs, 'noisy.wav'); ``` 6. 播放干扰前和干扰后的音频以及绘制功率谱: ```matlab % 播放干扰前的音频 sound(x, Fs); % 播放干扰后的音频 sound(y, Fs); % 绘制干扰前的音频功率谱 [Px, f] = analyze(x, Fs); figure; plot(f, Px); xlabel('Frequency (Hz)'); ylabel('Power'); % 绘制干扰后的音频功率谱 [Py, f] = analyze(y, Fs); figure; plot(f, Py); xlabel('Frequency (Hz)'); ylabel('Power'); ``` 通过这些基本的操作,您可以完成您提出的问题。

相关推荐

最新推荐

recommend-type

MAtlab窗函数法和双线性变换法设计FIR滤波器和IIR滤波器-DSP.doc

先采集一单声道音频信号(.wav)并用WAVREAD文件采样读取,并对其进行频谱分析。分别用窗函数法和双线性变换法设计低通、高通、带通三种FIR滤波器和IIR滤波器。用M文件使信号通过滤波器并对输出信号进行时域和频域...
recommend-type

Timit语音库语音格式转换程序

本文将详细介绍Timit语音库语音格式转换程序的实现细节,该程序可以将Timit语音数据集的格式转变为MATLAB可以直接读取的wav格式。 一、音频格式转换 音频格式转换是指将一份音频文件从一种格式转换为另一种格式的...
recommend-type

2.matlab处理音频信号.doc

matlab处理音频信号 一、 问题的提出: 数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢? 信号是传递信息的函数。离散时间信号——序列——可以用图形来表示。 按信号特点的...
recommend-type

语音信号的短时分析 Matlab语言完成程序编写工作

本实验的主要目的是通过 Matlab 语言完成语音信号短时分析的程序编写工作,了解语音信号短时平均能量函数及短时平均过零数的计算方法和重要意义。 语音信号短时分析是语音信号处理中的一个重要步骤,它可以对语音...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依