for i=1:1:5724 D(i)= sqrt((contour(:,2)-579).^2 + (contour(:,1)-603).^2); end
时间: 2023-11-03 17:06:01 浏览: 70
这段代码中存在语法错误,应该修改为:
```matlab
for i = 1:1:5724
D(i) = sqrt((contour(i,2)-579).^2 + (contour(i,1)-603).^2);
end
```
在计算每个点到坐标 $(603, 579)$ 的距离时,应该使用当前迭代变量 $i$ 所代表的点的坐标,即 `contour(i,1)` 和 `contour(i,2)`。此外,计算平方和时应该使用加号进行运算。
相关问题
for i=1:1:5724 D(i)=sqrt((contour(:,2)-579).^2+(contour(:,1)-603).^2) end
在这段代码中,您定义了一个循环,其中您计算了一个名为D的向量。在每次迭代中,您采用了一个名为“contour”的矩阵,并从其第二列和第一列中提取值,然后使用它们计算每个元素与给定点(579,603)之间的距离。最后,您将结果存储在向量D的相应位置中。
需要注意的是,您的代码中的距离计算公式有误。正确的公式应该是:
D = sqrt((contour(:,2)-579).^2 + (contour(:,1)-603).^2);
其中“+”符号用于将两个平方项相加。
for i = 1:1:5724 D(i) = sqrt((contour(i,2)-579).^2 + (contour(i,1)-603).^2); end
这段代码使用了一个循环来计算一个向量D中每个元素的值。计算公式为欧几里得距离,即平面上两点之间的距离公式。其中contour是一个5724行2列的矩阵,表示5724个点的(x,y)坐标。循环的过程中,每次计算一个点到坐标为(579,603)的点的距离,并将结果存入向量D中。最终得到一个长度为5724的向量D,其中每个元素表示一个点到(579,603)的距离。
阅读全文
相关推荐

















