PointNet++点云处理精讲(PyTorch)
三维点云是物理世界的三维数据表达形式,其应用日益广泛,如自动驾驶、AR/VR、FaceID等。PointNet网络模型是直接对三维点云数据进行深度学习的开山之作,PointNet++是对PointNet的改进技术。作为点云处理深度学习方法的里程碑工作,启发了很多后续研究。 本课程对PyTorch版的PointNet++进行原理讲解、论文复现和代码详解。包括: (1)提供三维点云物体分类数据集ModelNet40、物体部件分割数据集ShapeNet和场景分割数据集S3DIS的下载、可视化软件和方法; (2)在Ubuntu系统上演示使用PointNet++进行三维点云的物体分类、部件分割和场景语义分割的训练和测试; (3)详解PointNet++的原理、程序代码和实现细节,并使用PyCharm进行Debug调试代码和单步跟踪。 需要学习TensorFlow版PointNet++的学员可前往本人推出了课程《PointNet++点云处理TensorFlow版》