kfree(client->hf_fifo.buffer);

时间: 2023-05-13 19:06:33 浏览: 79
这是一个关于内存释放的问题,kfree() 是 Linux 内核中用于释放内存的函数,client->hf_fifo.buffer 是一个指针变量,它指向一个缓冲区。因此,这个代码片段的作用是释放这个缓冲区所占用的内存。
相关问题

struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; }; struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; };struct pokemon_uart_port { struct uart_port port; struct clk *clk; const struct vendor_data vendor; unsigned int im; / interrupt mask / unsigned int old_status; unsigned int fifosize; unsigned int old_cr; / state during shutdown */ unsigned int fixed_baud; struct ring_buffer tx_buf; struct ring_buffer rx_buf; char type[12]; };struct ring_buffer ring_buffer_init(unsigned int capacity) { struct ring_buffer rbuf=kmalloc(sizeof(struct ring_buffer),GFP_KERNEL); rbuf->capacity=capacity; rbuf->head = rbuf->size=0; rbuf->tail = capacity - 1; rbuf->data = kmalloc(rbuf->capacity * sizeof(struct msg), GFP_KERNEL); printk(KERN_DEBUG "ring_buffer create successfully!/n"); return rbuf; }static int pokemon_uart_probe(struct amba_device *dev, const struct amba_id *id) { struct pokemon_uart_port *pup; struct vendor_data *vendor = id->data; int portnr, ret; portnr = pokemon_find_free_port(); if (portnr < 0) return portnr; pup = devm_kzalloc(&dev->dev, sizeof(struct pokemon_uart_port), GFP_KERNEL); if(!pup) return -ENOMEM; pup->clk = devm_clk_get(&dev->dev, NULL); if(IS_ERR(pup->clk)) return PTR_ERR(pup->clk); pup->port.irq = dev->irq[0]; pup->port.line = portnr; pup->vendor = vendor; pup->fifosize = 32; pup->port.iotype = pup->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; pup->port.ops = &pokemon_uart_ops; snprintf(pup->type, sizeof(pup->type), "PL011 rev%u", amba_rev(dev)); pup->tx_buf = ring_buffer_init(10); pup->rx_buf = ring_buffer_init(10); ret = pokemon_setup_port(&dev->dev, pup, &dev->res, portnr); if (ret) return ret; amba_set_drvdata(dev, pup); return pokemon_register_port(pup); }检查一下这段linux内核驱动代码中,有无代码逻辑和格式错误,如果有,请给出修改之后的代码

以下是修改后的代码: ``` struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; }; struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; }; struct pokemon_uart_port { struct uart_port port; struct clk *clk; const struct vendor_data vendor; unsigned int im; /* interrupt mask */ unsigned int old_status; unsigned int fifosize; unsigned int old_cr; /* state during shutdown */ unsigned int fixed_baud; struct ring_buffer tx_buf; struct ring_buffer rx_buf; char type[12]; }; struct ring_buffer *ring_buffer_init(unsigned int capacity) { struct ring_buffer *rbuf = kmalloc(sizeof(struct ring_buffer), GFP_KERNEL); if (!rbuf) { return NULL; } rbuf->capacity = capacity; rbuf->head = rbuf->size = 0; rbuf->tail = capacity - 1; rbuf->data = kmalloc(rbuf->capacity * sizeof(struct msg), GFP_KERNEL); if (!rbuf->data) { kfree(rbuf); return NULL; } printk(KERN_DEBUG "ring_buffer create successfully!\n"); return rbuf; } static int pokemon_uart_probe(struct amba_device *dev, const struct amba_id *id) { struct pokemon_uart_port *pup; struct vendor_data *vendor = id->data; int portnr, ret; portnr = pokemon_find_free_port(); if (portnr < 0) { return portnr; } pup = devm_kzalloc(&dev->dev, sizeof(struct pokemon_uart_port), GFP_KERNEL); if (!pup) { return -ENOMEM; } pup->clk = devm_clk_get(&dev->dev, NULL); if (IS_ERR(pup->clk)) { return PTR_ERR(pup->clk); } pup->port.irq = dev->irq[0]; pup->port.line = portnr; pup->vendor = vendor; pup->fifosize = 32; pup->port.iotype = pup->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; pup->port.ops = &pokemon_uart_ops; snprintf(pup->type, sizeof(pup->type), "PL011 rev%u", amba_rev(dev)); pup->tx_buf.data = NULL; pup->rx_buf.data = NULL; pup->tx_buf.capacity = 10; pup->rx_buf.capacity = 10; pup->tx_buf.size = 0; pup->rx_buf.size = 0; pup->tx_buf.head = 0; pup->tx_buf.tail = pup->tx_buf.capacity - 1; pup->rx_buf.head = 0; pup->rx_buf.tail = pup->rx_buf.capacity - 1; pup->tx_buf.data = kmalloc(pup->tx_buf.capacity * sizeof(struct msg), GFP_KERNEL); if (!pup->tx_buf.data) { devm_kfree(&dev->dev, pup); return -ENOMEM; } pup->rx_buf.data = kmalloc(pup->rx_buf.capacity * sizeof(struct msg), GFP_KERNEL); if (!pup->rx_buf.data) { kfree(pup->tx_buf.data); devm_kfree(&dev->dev, pup); return -ENOMEM; } ret = pokemon_setup_port(&dev->dev, pup, &dev->res, portnr); if (ret) { kfree(pup->tx_buf.data); kfree(pup->rx_buf.data); devm_kfree(&dev->dev, pup); return ret; } amba_set_drvdata(dev, pup); ret = pokemon_register_port(pup); if (ret) { kfree(pup->tx_buf.data); kfree(pup->rx_buf.data); devm_kfree(&dev->dev, pup); return ret; } return 0; } ``` 修改说明: 1. `ring_buffer_init` 函数返回类型应该是 `struct ring_buffer *` 而不是 `struct ring_buffer`。 2. `ring_buffer_init` 函数内存分配失败时需要释放已经分配的内存。 3. `pup->tx_buf` 和 `pup->rx_buf` 的 `data` 成员在初始化之前需要置为 `NULL`。 4. `pup->tx_buf` 和 `pup->rx_buf` 的 `size` 成员在初始化之前需要置为 `0`。 5. `pup->tx_buf` 和 `pup->rx_buf` 的 `head` 和 `tail` 成员在初始化时需要分别设置为 `0` 和 `capacity - 1`。 6. 在 `pokemon_uart_probe` 函数中,`pup->tx_buf` 和 `pup->rx_buf` 的 `data` 成员需要进行内存分配,并在分配失败时要释放已经分配的内存。 7. 在 `pokemon_uart_probe` 函数中,需要在成功分配内存后初始化 `pup->tx_buf` 和 `pup->rx_buf` 的 `capacity` 成员。

static int sbsa_uart_probe(struct platform_device *pdev) { struct uart_amba_port *uap; struct resource r; int portnr, ret; int baudrate; / * Check the mandatory baud rate parameter in the DT node early * so that we can easily exit with the error. */ if (pdev->dev.of_node) { struct device_node *np = pdev->dev.of_node; ret = of_property_read_u32(np, "current-speed", &baudrate); if (ret) return ret; } else { baudrate = 115200; } portnr = pl011_find_free_port(); if (portnr < 0) return portnr; uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), GFP_KERNEL); if (!uap) return -ENOMEM; ret = platform_get_irq(pdev, 0); if (ret < 0) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "cannot obtain irq\n"); return ret; } uap->port.irq = ret; #ifdef CONFIG_ACPI_SPCR_TABLE if (qdf2400_e44_present) { dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n"); uap->vendor = &vendor_qdt_qdf2400_e44; } else #endif uap->vendor = &vendor_sbsa; uap->reg_offset = uap->vendor->reg_offset; uap->fifosize = 32; uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; uap->port.ops = &sbsa_uart_pops; uap->fixed_baud = baudrate; snprintf(uap->type, sizeof(uap->type), "SBSA"); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); ret = pl011_setup_port(&pdev->dev, uap, r, portnr); if (ret) return ret; platform_set_drvdata(pdev, uap); return pl011_register_port(uap); }在上述代码中,我需要添加一个功能:在以uefi方式启动系统时,uart驱动读取acpi表内有关波特率的设置值,并以这个值进行串口波特率设置,请根据我的要求,在原代码中添加这一功能,并给出acpi表的描述

为了实现在以UEFI方式启动系统时,UART驱动能够读取ACPI表内有关波特率的设置值,并以这个值进行串口波特率设置,可以在sbsa_uart_probe函数中添加以下代码: ``` #ifdef CONFIG_ACPI struct acpi_table_header *hdr; acpi_status status; struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; status = acpi_get_table(ACPI_SIG_SPCR, 0, &buf); if (ACPI_SUCCESS(status)) { hdr = buf.pointer; if (hdr->length >= sizeof(struct acpi_spcr)) { struct acpi_spcr *spcr = (struct acpi_spcr *)hdr; uap->fixed_baud = spcr->baud_rate; } } kfree(buf.pointer); #endif ``` 这段代码会先通过acpi_get_table函数获取ACPI表,然后判断是否是SPCR表,如果是,则从中读取波特率的设置值,并把这个值赋给uap->fixed_baud。 ACPI表的描述: ACPI(Advanced Configuration and Power Interface)是一种开放标准,用于操作系统与计算机硬件进行交互。其中SPCR(Serial Port Console Redirection)是一种ACPI表,用于描述串口控制台重定向相关的信息,包括波特率、数据位、停止位、校验位等参数。在Linux内核中,可以使用acpi_get_table函数获取SPCR表的内容。

相关推荐

int dsi_panel_set_backlight(struct dsi_panel panel, u32 bl_lvl) { int rc = 0; struct dsi_backlight_config bl = &panel->bl_config; if (panel->host_config.ext_bridge_mode) return 0; DSI_DEBUG("backlight type:%d lvl:%d\n", bl->type, bl_lvl); switch (bl->type) { case DSI_BACKLIGHT_WLED: rc = backlight_device_set_brightness(bl->raw_bd, bl_lvl); break; case DSI_BACKLIGHT_DCS: rc = dsi_panel_update_backlight(panel, bl_lvl); break; case DSI_BACKLIGHT_EXTERNAL: rc = lcd_bl_set_led_brightness(bl_lvl); //pr_err("dsi set bias brightness: %d\n", bl_lvl); rc = lcd_bias_set_led_brightness(bl_lvl); //pr_err("dsi set brightness: %d\n", bl_lvl); break; case DSI_BACKLIGHT_PWM: rc = dsi_panel_update_pwm_backlight(panel, bl_lvl); break; default: DSI_ERR("Backlight type(%d) not supported\n", bl->type); rc = -ENOTSUPP; } return rc; } int lcd_bl_set_led_brightness(int value)//for set bringhtness { dev_warn(&lcd_bl_i2c_client->dev, "lcm 8866 bl = %d\n", value); if (value < 0) { dev_warn(&lcd_bl_i2c_client->dev, "value=%d\n", value); return 0; } if (value > 0) { lcd_bl_write_byte(KTZ8866_DISP_BB_LSB, value & 0x07);// lsb lcd_bl_write_byte(KTZ8866_DISP_BB_MSB, (value >> 3) & 0xFF);// msb lcd_bl_write_byte(KTZ8866_DISP_BL_ENABLE, 0x4F); / BL enabled and Current sink 1/2/3/4 enabled;/ } else { lcd_bl_write_byte(KTZ8866_DISP_BB_LSB, 0x00);// lsb lcd_bl_write_byte(KTZ8866_DISP_BB_MSB, 0x00);// msb lcd_bl_write_byte(KTZ8866_DISP_BL_ENABLE, 0x00); /* BL enabled and Current sink 1/2/3/4 disabled;/ } return 0; } int lcd_bias_set_led_brightness(int value)//for set bringhtness { dev_warn(&lcd_bl_bias_i2c_client->dev, "lcm 8866 bl = %d\n", value); if (value < 0) { dev_warn(&lcd_bl_bias_i2c_client->dev, "invalid value=%d\n", value); return 0; } if (value > 0) { lcd_bl_bias_write_byte(KTZ8866_DISP_BB_LSB, value & 0x07);// lsb lcd_bl_bias_write_byte(KTZ8866_DISP_BB_MSB, (value >> 3) & 0xFF);// msb lcd_bl_bias_write_byte(KTZ8866_DISP_BL_ENABLE, 0x4F); / BL enabled and Current sink 1/2/3/4 enabled;/ } else { lcd_bl_bias_write_byte(KTZ8866_DISP_BB_LSB, 0x00);// lsb lcd_bl_bias_write_byte(KTZ8866_DISP_BB_MSB, 0x00);// msb lcd_bl_bias_write_byte(KTZ8866_DISP_BL_ENABLE, 0x00); / BL enabled and Current sink 1/2/3/4 disabled;*/ } return 0; } dsi_panel_set_backlight、lcd_bl_set_led_brightness和lcd_bias_set_led_brightness源码如上,帮忙用工作队列的方式,同时实现在case DSI_BACKLIGHT_EXTERNAL:下并发执行lcd_bl_set_led_brightness和lcd_bias_set_led_brightness两个函数

#include /* __init and __exit macroses */ #include /* KERN_INFO macros */ #include /* required for all kernel modules */ #include /* module_param() and MODULE_PARM_DESC() */ #include /* struct file_operations, struct file */ #include /* struct miscdevice and misc_[de]register() */ #include /* kzalloc() function */ #include /* copy_{to,from}_user() */ #include //init_task再次定义 #include "proc_relate.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Wu Yimin>"); MODULE_DESCRIPTION("proc_relate kernel modoule"); static int proc_relate_open(struct inode *inode, struct file *file) { struct proc_info *buf; int err = 0; buf=kmalloc(sizeof(struct proc_info)*30,GFP_KERNEL); file->private_data = buf; return err; } static ssize_t proc_relate_read(struct file *file, char __user * out,size_t size, loff_t * off) { struct proc_info *buf = file->private_data; /* 你需要补充的代码 */ } static int proc_relate_close(struct inode *inode, struct file *file) { struct buffer *buf = file->private_data; kfree(buf); return 0; } static struct file_operations proc_relate_fops = { .owner = THIS_MODULE, .open = proc_relate_open, .read = proc_relate_read, .release = proc_relate_close, .llseek = noop_llseek }; static struct miscdevice proc_relate_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = "proc_relate", .fops = &proc_relate_fops }; static int __init proc_relate_init(void) { misc_register(&proc_relate_misc_device); printk(KERN_INFO "proc_relate device has been registered.\n"); return 0; } static void __exit proc_relate_exit(void) { misc_deregister(&proc_relate_misc_device); printk(KERN_INFO "proc_relate device has been unregistered\n"); } module_init(proc_relate_init); module_exit(proc_relate_exit);补充这段代码需要补充的函数部分,使其能编译为内核模块,安装该内核模块后测试程序,运行结果类似如下:Here is parent process,pid = 7329 this is a child,pid is 7330 this is another child,pid is 7331 this is a child,pid is 7333 In thread,pid=7331 tid=7334 thread id=1254224352 this is a child,pid is 7332 this is a child,pid is 7335 ------------------------------------------------------- pid=2616 tgid=2616 comm=sshd sessionid=4 mm=ffff8000fae19000 activeMM=ffff8000fae19000 parent =1971 real_parent=1971 group_leader2616 ------------------------------------------------------- pid=2670 tgid=2670 comm=sshd sessionid=4 mm=ffff8000fa477500 activeMM=ffff8000fa477500 parent =2616 real_parent=2616 group_leader2670 -------------------------------------------------------

#include #include #include #include #include #define DEVICE_NAME "mydevice" #define BUF_SIZE 4096 static char *dev_buf; static int major; static int open(struct inode *inode, struct file *file) { printk(KERN_INFO "mydevice: device opened.\n"); return 0; } static int release(struct inode *inode, struct file *file) { printk(KERN_INFO "mydevice: device closed.\n"); return 0; } static ssize_t read(struct file *file, char __user *buf, size_t count, loff_t *pos) { int bytes_read = 0; if (*pos >= BUF_SIZE) { return 0; } if (count + *pos > BUF_SIZE) { count = BUF_SIZE - *pos; } if (copy_to_user(buf, dev_buf + *pos, count)) { return -EFAULT; } *pos += count; bytes_read = count; printk(KERN_INFO "mydevice: %d bytes read.\n", bytes_read); return bytes_read; } static ssize_t write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { int bytes_written = 0; if (*pos >= BUF_SIZE) { return -ENOSPC; } if (count + *pos > BUF_SIZE) { count = BUF_SIZE - *pos; } if (copy_from_user(dev_buf + *pos, buf, count)) { return -EFAULT; } *pos += count; bytes_written = count; printk(KERN_INFO "mydevice: %d bytes written.\n", bytes_written); return bytes_written; } static long ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case 0: // 控制命令0 // 执行相应的控制操作 break; case 1: // 控制命令1 // 执行相应的控制操作 break; default: return -ENOTTY; } return 0; } static loff_t lseek(struct file *file, loff_t offset, int whence) { loff_t newpos = 0; switch (whence) { case 0: // SEEK_SET newpos = offset; break; case 1: // SEEK_CUR newpos = file->f_pos + offset; break; case 2: // SEEK_END newpos = BUF_SIZE + offset; break; default: return -EINVAL; } if (newpos < 0 || newpos > BUF_SIZE) { return -EINVAL; } file->f_pos = newpos; return newpos; } static struct file_operations mydevice_fops = { .owner = THIS_MODULE, .open = open, .release = release, .read = read, .write = write, .unlocked_ioctl = ioctl, .llseek = lseek, }; static int __init mydevice_init(void) { dev_buf = kmalloc(BUF_SIZE, GFP_KERNEL); if (!dev_buf) { printk(KERN_ALERT "mydevice: kmalloc failed.\n"); return -ENOMEM; } memset(dev_buf, 0, BUF_SIZE); major = register_chrdev(0, DEVICE_NAME, &mydevice_fops); if (major < 0) { printk(KERN_ALERT "mydevice: register_chrdev failed.\n"); return major; } printk(KERN_INFO "mydevice: Device registered, major = %d.\n", major); return 0; } static void __exit mydevice_exit(void) { unregister_chrdev(major, DEVICE_NAME); kfree(dev_buf); printk(KERN_INFO "mydevice: Device unregistered.\n"); } module_init(mydevice_init); module_exit(mydevice_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Your Name"); MODULE_DESCRIPTION("My Device Driver");解释这串代码

在Linux内核驱动中,构建一个存放如下结构体的队列: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; }; 这个队列结构体为struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; };。 请给出操作这个队列的函数,包括初始化,入队,出队,注销等。 再构建两个函数,在函数中使用操作队列的函数完成如下功能: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型。 函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;请在驱动的probe函数中注册这个队列,在remove函数中注销队列,使用移位的方式放置和还原unsigned int类型数据。注意,全部的函数都需使用msg结构体指针修改msg成员,不要产生复制数据。

最新推荐

recommend-type

node-v4.1.0-linux-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。