帮我写一个基于opencv测照片相机内参和相机畸变的代码
时间: 2023-08-31 09:34:14 浏览: 118
### 回答1:
以下是使用OpenCV测量相机内参和相机畸变的基本代码:
```
import numpy as np
import cv2
# 读取图片
img = cv2.imread('photo.jpg')
# 定义标定板的行和列
rows = 6
cols = 8
# 创建标定板的世界坐标系坐标
objp = np.zeros((rows*cols, 3), np.float32)
objp[:, :2] = np.mgrid[0:cols, 0:rows].T.reshape(-1, 2)
# 存储所有图像的世界坐标系坐标和图像坐标
objpoints = [] # 3D点
imgpoints = [] # 2D点
# 获取标定板角点的图像坐标
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (cols, rows), None)
# 如果找到,则添加到图像点列表和世界点列表中
if ret:
objpoints.append(objp)
imgpoints.append(corners)
# 绘制角点
cv2.drawChessboardCorners(img, (cols, rows), corners, ret)
# 计算相机内参和畸变系数
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# 显示结果
print("相机内参:")
print(mtx)
print("\n畸变系数:")
print(dist)
print("\n旋转向量:")
print(rvecs)
print("\n平移向量:")
print(tvecs)
# 保存结果
np.savetxt('mtx.txt', mtx)
np.savetxt('dist.txt', dist)
# 显示图像
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,在此示例中,代码假定已找到标定板的角点,并且将它们添加到对象点列表和图像点列表中。如果没有找到所有的角点,或者只找到了一些角点,可能需要进行一些额外的处理才能正确计算相机内参和畸变系数。
### 回答2:
下面是一个基于OpenCV的代码示例,用于测量照片相机的内参和相机畸变。
```python
import cv2
import numpy as np
def calibrate_camera(image_paths, checkerboard_size, square_size):
# 准备对象点和图像点的存储数组
obj_points = [] # 3D对象点实际坐标
img_points = [] # 2D图像点坐标
# 创建对象点的实际坐标
objp = np.zeros((checkerboard_size[0] * checkerboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:checkerboard_size[0], 0:checkerboard_size[1]].T.reshape(-1, 2) * square_size
# 遍历所有图像,查找棋盘格角点
for image_path in image_paths:
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 查找棋盘格角点
ret, corners = cv2.findChessboardCorners(gray, checkerboard_size, None)
# 如果找到角点,则添加对象点和图像点
if ret == True:
obj_points.append(objp)
img_points.append(corners)
# 标定相机
ret, camera_matrix, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None)
return camera_matrix, dist_coeffs
# 示例用法
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg'] # 输入图像路径
checkerboard_size = (9, 6) # 棋盘格规格
square_size = 1.0 # 棋盘格方块尺寸(单位:毫米)
# 调用函数进行相机标定
camera_matrix, dist_coeffs = calibrate_camera(image_paths, checkerboard_size, square_size)
# 打印相机内参和相机畸变
print("相机内参:")
print(camera_matrix)
print("相机畸变:")
print(dist_coeffs)
```
注意:在运行代码之前,需要确保OpenCV已经正确安装并且导入了相应的库。此外,需要提供一组包含标定棋盘格图像的图像列表,并指定棋盘格的大小和方块大小作为输入参数。代码将返回相机的内参(相机矩阵)和畸变系数。
### 回答3:
基于OpenCV实现相机内参和相机畸变的代码如下:
```python
import numpy as np
import cv2
def calibrate_camera(image_paths, chessboard_size):
# 创建棋盘格角点的坐标
obj_points = []
img_points = []
objp = np.zeros((chessboard_size[0] * chessboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)
for image_path in image_paths:
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 查找棋盘格角点
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
# 如果找到角点
if ret == True:
obj_points.append(objp)
img_points.append(corners)
# 绘制角点并展示
cv2.drawChessboardCorners(img, chessboard_size, corners, ret)
cv2.imshow('img', img)
cv2.waitKey(500)
cv2.destroyAllWindows()
# 进行相机内参和相机畸变的计算
ret, matrix, distortion, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None)
return matrix, distortion
if __name__ == '__main__':
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg'] # 输入棋盘格照片的路径
chessboard_size = (9, 6) # 棋盘格每行、每列的角点数量
camera_matrix, distortion_coeffs = calibrate_camera(image_paths, chessboard_size)
print('Camera Matrix:')
print(camera_matrix)
print('\nDistortion Coefficients:')
print(distortion_coeffs)
```
使用此代码前,确保已安装OpenCV库,并将棋盘格照片的路径替换为实际的图片路径。chessboard_size可以根据棋盘格的实际情况进行调整。在运行代码后,将输出相机内参矩阵和相机畸变系数。
阅读全文