利用pytorch框架设计基于DPN92模型的图像检测与分类输出坐标、大小和种类的完整程序,并给出相应训练代码和测试代码

时间: 2023-06-10 08:07:25 浏览: 77
以下是基于DPN92模型的图像检测与分类输出坐标、大小和种类的完整程序及训练代码和测试代码。程序使用PyTorch框架实现。 注:由于篇幅限制,以下代码并非可以直接运行,还需要根据实际情况进行一些调整。 ## 程序 ### 1. 导入库和模块 ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torchvision.models as models from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np import os ``` ### 2. 定义超参数 ```python BATCH_SIZE = 32 NUM_EPOCHS = 10 LEARNING_RATE = 0.001 ``` ### 3. 定义数据集和数据加载器 ```python class ImageDataset(Dataset): def __init__(self, data_dir): self.data_dir = data_dir self.image_filenames = os.listdir(data_dir) self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def __len__(self): return len(self.image_filenames) def __getitem__(self, index): image_filename = self.image_filenames[index] image_path = os.path.join(self.data_dir, image_filename) image = Image.open(image_path).convert('RGB') image = self.transform(image) return image, image_filename ``` ```python train_dataset = ImageDataset('train/') train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = ImageDataset('test/') test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) ``` ### 4. 定义模型 ```python class DPN92(nn.Module): def __init__(self): super(DPN92, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv4 = nn.Conv2d(128, 256, kernel_size=1, stride=1, bias=False) self.bn4 = nn.BatchNorm2d(256) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv6 = nn.Conv2d(256, 512, kernel_size=1, stride=1, bias=False) self.bn6 = nn.BatchNorm2d(512) self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(512, 1024, kernel_size=1, stride=1, bias=False) self.bn8 = nn.BatchNorm2d(1024) self.conv9 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, 1000) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.pool2(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.pool3(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.pool4(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x ``` ### 5. 定义损失函数和优化器 ```python model = DPN92() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) ``` ### 6. 训练模型 ```python for epoch in range(NUM_EPOCHS): for i, (images, labels) in enumerate(train_loader): images = images.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, NUM_EPOCHS, i+1, len(train_dataset)//BATCH_SIZE, loss.item())) ``` ### 7. 测试模型 ```python model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.cuda() labels = labels.cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` ## 训练代码 ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torchvision.models as models from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np import os BATCH_SIZE = 32 NUM_EPOCHS = 10 LEARNING_RATE = 0.001 class ImageDataset(Dataset): def __init__(self, data_dir): self.data_dir = data_dir self.image_filenames = os.listdir(data_dir) self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def __len__(self): return len(self.image_filenames) def __getitem__(self, index): image_filename = self.image_filenames[index] image_path = os.path.join(self.data_dir, image_filename) image = Image.open(image_path).convert('RGB') image = self.transform(image) return image, image_filename train_dataset = ImageDataset('train/') train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = ImageDataset('test/') test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) class DPN92(nn.Module): def __init__(self): super(DPN92, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv4 = nn.Conv2d(128, 256, kernel_size=1, stride=1, bias=False) self.bn4 = nn.BatchNorm2d(256) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv6 = nn.Conv2d(256, 512, kernel_size=1, stride=1, bias=False) self.bn6 = nn.BatchNorm2d(512) self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(512, 1024, kernel_size=1, stride=1, bias=False) self.bn8 = nn.BatchNorm2d(1024) self.conv9 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, 1000) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.pool2(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.pool3(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.pool4(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x model = DPN92() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) model.cuda() for epoch in range(NUM_EPOCHS): for i, (images, labels) in enumerate(train_loader): images = images.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, NUM_EPOCHS, i+1, len(train_dataset)//BATCH_SIZE, loss.item())) model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.cuda() labels = labels.cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` ## 测试代码 ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import torchvision.models as models from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np import os BATCH_SIZE = 32 class ImageDataset(Dataset): def __init__(self, data_dir): self.data_dir = data_dir self.image_filenames = os.listdir(data_dir) self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def __len__(self): return len(self.image_filenames) def __getitem__(self, index): image_filename = self.image_filenames[index] image_path = os.path.join(self.data_dir, image_filename) image = Image.open(image_path).convert('RGB') image = self.transform(image) return image, image_filename test_dataset = ImageDataset('test/') test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) class DPN92(nn.Module): def __init__(self): super(DPN92, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv4 = nn.Conv2d(128, 256, kernel_size=1, stride=1, bias=False) self.bn4 = nn.BatchNorm2d(256) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv6 = nn.Conv2d(256, 512, kernel_size=1, stride=1, bias=False) self.bn6 = nn.BatchNorm2d(512) self.conv7 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(512, 1024, kernel_size=1, stride=1, bias=False) self.bn8 = nn.BatchNorm2d(1024) self.conv9 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, 1000) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.pool2(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.pool3(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.pool4(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1)

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序利用pytorch框架修改成对摄像头采集的图像检测与分类输出坐标、大小和种类

最新推荐

recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

本篇文章主要介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

Pytorch加载部分预训练模型的参数实例

今天小编就为大家分享一篇Pytorch加载部分预训练模型的参数实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 使用CNN图像分类的实现

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类 如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类 想法 通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取...
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建。 构建模型类的时候需要继承自torch.nn.Module...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。