改进代码错误并输出预测结果,代码如下:# 将数据集拆分为培训和测试数据集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) # 根据问题(分类或回归)选择算法(决策树算法) clf = DecisionTreeClassifier() # 将训练数据集传递给算法进行训练 clf.fit(x_train, y_train) # 将测试数据传递给经过训练的算法,以预测结果 y_pred = clf.predict(x_test) # 比较预测结果和真实值,给出算法准确性 accuracy = accuracy_score(y_test, y_pred) print("准确性: ", accuracy)
时间: 2023-12-24 10:18:23 浏览: 76
代码有一些错误,我会逐一指出并进行改正:
1. 代码中没有 import 相应的库,需要导入 sklearn 中的 train_test_split, DecisionTreeClassifier, accuracy_score。可以加入以下代码:
```python
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
```
2. 变量 x、y 没有定义,需要先定义它们,例如:
```python
x = [[1, 2], [2, 3], [3, 4], [4, 5]]
y = [0, 1, 0, 1]
```
3. 在 train_test_split 函数中,test_size 参数应该是一个小数,表示测试集所占比例,而不是一个整数。应该修改为:
```python
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
```
4. 在 DecisionTreeClassifier 中没有设置 criterion 参数,这个参数用来指定衡量分裂质量的函数。应该添加一个 criterion='gini' 参数,例如:
```python
clf = DecisionTreeClassifier(criterion='gini')
```
5. 在输出准确性时,应该将 accuracy_score 的返回值乘以 100,将小数转换为百分数。应该修改为:
```python
accuracy = accuracy_score(y_test, y_pred)
print("准确性: {:.2f}%".format(accuracy * 100))
```
改进后的代码如下:
```python
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
x = [[1, 2], [2, 3], [3, 4], [4, 5]]
y = [0, 1, 0, 1]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier(criterion='gini')
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
print("准确性: {:.2f}%".format(accuracy * 100))
```
输出的预测结果将会是测试集中每个样本的预测标签。
阅读全文