解释img = cv2.imdecode(np.fromfile(self.fname, dtype=np.uint8), -1)
时间: 2023-11-13 20:03:59 浏览: 106
这行代码使用OpenCV库中的函数cv2.imdecode()将一个文件解码成一个图像数组。np.fromfile(self.fname, dtype=np.uint8)将文件读取为一个一维的numpy数组,数据类型为uint8(即无符号8位整数),表示每个像素值可以用0-255的整数表示。解码参数-1表示保持解码后的图像的原始通道数和深度不变。
最终的图像数组可以用来进行图像处理、分析和显示等操作。
相关问题
解释代码:def main(args): obj_names = np.loadtxt(args.obj_file, dtype=str) N_map = np.load(args.N_map_file) mask = cv2.imread(args.mask_file, 0) N = N_map[mask > 0] L = np.loadtxt(args.L_file) if args.stokes_file is None: stokes = np.tile(np.array([[1, 0, 0, 0]]), (len(L), 1)) else: stokes = np.loadtxt(args.stokes_file) v = np.array([0., 0., 1.], dtype=float) H = (L + v) / np.linalg.norm(L + v, axis=1, keepdims=True) theta_d = np.arccos(np.sum(L * H, axis=1)) norm = np.linalg.norm(L - H, axis=1, keepdims=True) norm[norm == 0] = 1 Q = (L - H) / norm for i_obj, obj_name in enumerate(obj_names[args.obj_range[0]:args.obj_range[1]]): print('===== {} - {} start ====='.format(i_obj, obj_name)) obj_name = str(obj_name) pbrdf = PBRDF(os.path.join(args.pbrdf_dir, obj_name + 'matlab', obj_name + 'pbrdf.mat')) ret = Parallel(n_jobs=args.n_jobs, verbose=5, prefer='threads')([delayed(render)(i, pbrdf, n, L, stokes, H, theta_d, Q) for i, n in enumerate(N)]) ret.sort(key=lambda x: x[0]) M = np.array([x[1] for x in ret], dtype=float) if args.save_type != 'raw': M = M / M.max() pimgs = np.zeros((len(L), 4) + N_map.shape) pimgs[:, :, mask > 0] = M.transpose(2, 1, 0, 3) out_path = os.path.join(args.out_dir, obj_name) makedirs(out_path) print('Saving images...') fnames = [] for i, imgs in enumerate(tqdm(pimgs)): if args.save_type == 'npy' or args.save_type == 'raw': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.npy'.format(i + 1, pangle) fnames.append(fname) np.save(os.path.join(out_path, fname), img) elif args.save_type == 'png': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.png'.format(i + 1, pangle) fnames.append(fname) img = img * np.iinfo(np.uint16).max img = img[..., ::-1] cv2.imwrite(os.path.join(out_path, fname), img.astype(np.uint16)) np.save(os.path.join(out_path, 'normal_gt.npy'), N_map) shutil.copyfile(args.mask_file, os.path.join(out_path, 'mask.png')) shutil.copyfile(args.L_file, os.path.join(out_path, 'light_directions.txt')) print('===== {} - {} done ====='.format(i_obj, obj_name))
这段代码是一个函数 `main`,它的输入参数是 `args`,其中包含了一些文件路径和其他参数。这个函数主要的任务是对给定的场景中的每个物体进行渲染,并保存渲染结果的图像。下面是这个函数的具体步骤:
1. 从文件中加载物体的名称列表 `obj_names`。
2. 从文件中加载法线图 `N_map`。
3. 从文件中加载掩膜图 `mask`。
4. 根据掩膜图选择出在场景中的光源方向向量 `L`。
5. 如果提供了 Stokes 向量文件,则从中加载 Stokes 向量 `stokes`;否则使用默认值。
6. 计算观测方向向量 `v` 和半角向量 `H`。
7. 计算太阳和观测方向之间的夹角 `theta_d`。
8. 计算半角向量和法线向量之间的差向量,并进行单位化。
9. 对于每个物体,进行以下操作:
1. 加载物体的反射率分布函数(PBRDF)。
2. 并行渲染该物体在每个法线上的图像。
3. 将渲染结果保存到文件中。
在保存渲染结果的时候,根据 `save_type` 参数的不同,可以选择将图像保存为 PNG 格式、原始二进制数据格式(npy),或者不进行格式转换直接保存。此外,函数还会将法线图、掩膜图、光源方向向量和保存的图像文件名列表等信息保存到输出目录下。
def render(self, mode='human'): if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(500,500) self.viewer.set_bounds(-2.2,2.2,-2.2,2.2) rod = rendering.make_capsule(1, .2) rod.set_color(.8, .3, .3) self.pole_transform = rendering.Transform() rod.add_attr(self.pole_transform) self.viewer.add_geom(rod) axle = rendering.make_circle(.05) axle.set_color(0,0,0) self.viewer.add_geom(axle) fname = path.join(path.dirname(__file__), "assets/clockwise.png") self.img = rendering.Image(fname, 1., 1.) self.imgtrans = rendering.Transform() self.img.add_attr(self.imgtrans) self.viewer.add_onetime(self.img) self.pole_transform.set_rotation(self.state[0] + np.pi/2) if self.last_u: self.imgtrans.scale = (-self.last_u/2, np.abs(self.last_u)/2) return self.viewer.render(return_rgb_array = mode=='rgb_array')
这是一个用于可视化的函数,用于渲染一个叫做 CartPole 的强化学习环境。这个函数使用 Python 的 gym 库提供的 rendering 模块来创建一个图形化界面,其中包含了一个杆子和一个小车。这个函数的主要作用是将当前状态(即杆子的角度和小车的位置)可视化出来,以便于观察算法的表现。具体来说,它会根据当前状态更新杆子的角度和小车的位置,并且还会根据上一次的动作更新小车的大小。最后,它会将渲染结果输出为一个可选的 RGB 数组或者人类可读的图像。
阅读全文