batch_size = 2 n_in = 1 vector = 120 n_out = 20 model = Sequential() model.add(LSTM(150, batch_input_shape=(batch_size, n_in, vector), stateful=True)) model.add(RepeatVector(n_out)) model.add(LSTM(150, return_sequences=True, stateful=True)) model.add(TimeDistributed(Dense(vector, activation='softmax'))) print(model.summary()) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test), batch_size=batch_size) 解释代码
时间: 2023-06-03 20:02:34 浏览: 100
keras model.fit 解决validation_spilt=num 的问题
这段代码是一个使用Keras框架实现的LSTM模型,它将输入数据分为batch_size批次,每批包含n_in个输入向量,每个向量的维度为vector,然后通过两个LSTM层处理数据,并且最后使用一个全连接层(TimeDistributed)映射到输出维度为vector的向量,并应用softmax激活函数。模型的损失函数是二元交叉熵,优化器采用adam优化算法。模型需要训练20次(epoch),并且在训练过程中提供验证数据(X_test, y_test)来评估模型的性能。
阅读全文