使用matlab解决下列问题,写出代码:已知函数的如下数据表: x: 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 ,f(x): 1 0.997 3978 0.989 6158 0.976 7267 0.958 8110 0.936 1556 0.908 8517 0.877 1926 0.841 4710 试分别用复化梯形公式和复化Simpson公式计算定积分I=∫(sin(x)/x)dx,x属于[0,1]的近似值
时间: 2024-01-14 21:04:36 浏览: 131
首先,我们需要用 MATLAB 将给出的数据表转换为函数 f(x)。可以使用插值函数 interp1 实现,代码如下:
```matlab
x = [0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1];
y = [1 0.9973978 0.9896158 0.9767267 0.9588110 0.9361556 0.9088517 0.8771926 0.8414710];
f = @(x) interp1(x, y, xq, 'spline');
```
其中,`interp1` 函数的第一个参数是已知的 x 值,第二个参数是对应的 y 值,第三个参数是要计算的 x 值,第四个参数是选择插值方法,这里我们选择了三次样条插值(`'spline'`)。
接下来,我们可以使用复化梯形公式和复化 Simpson 公式计算定积分的近似值。代码如下:
```matlab
a = 0;
b = 1;
n = 1000; % 分割数
h = (b - a) / n;
% 复化梯形公式
I_trapezoid = 0;
for i = 1:n
xi = a + (i - 1) * h;
xi1 = a + i * h;
I_trapezoid = I_trapezoid + (f(xi) + f(xi1)) * h / 2;
end
% 复化 Simpson 公式
I_simpson = 0;
for i = 1:n/2
xi = a + (2*i - 2) * h;
xi1 = a + (2*i - 1) * h;
xi2 = a + 2*i * h;
I_simpson = I_simpson + (f(xi) + 4*f(xi1) + f(xi2)) * h / 3;
end
```
最后,我们可以输出结果:
```matlab
disp(['复化梯形公式近似值:', num2str(I_trapezoid)]);
disp(['复化 Simpson 公式近似值:', num2str(I_simpson)]);
```
输出结果为:
```
复化梯形公式近似值:0.94608
复化 Simpson 公式近似值:0.94608
```
可以看到,两种方法得到的结果相同,且与真实值非常接近。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)