features = features_cols[cycle_data[0]]
时间: 2024-01-31 15:03:34 浏览: 72
这是一行代码,其中`features_cols`是一个字典或者类似字典的数据结构,`cycle_data`是一个二维数组或矩阵。`cycle_data[0]`表示取`cycle_data`这个二维数组的第一行数据。`features_cols[cycle_data[0]]`表示从`features_cols`这个字典中取出键为`cycle_data[0]`的值。最终结果赋值给了`features`这个变量。
相关问题
pool_train = cb.Pool(data = Xtrain, label = Ytrain, cat_features=cate_cols) pool_valid = cb.Pool(data = Xvalid, label = Yvalid, cat_features=cate_cols)
这段代码是使用CatBoost库创建训练和验证数据集的对象。其中,`Xtrain`和`Ytrain`表示训练数据集的特征和标签,`Xvalid`和`Yvalid`表示验证数据集的特征和标签。`cat_features`是一个可选参数,用于指定分类特征的列索引。`cb.Pool()`函数将数据和标签组合为一个CatBoost数据池对象,方便训练和验证模型。
# 导入数据集 data = pd.read_csv("pima.csv") # 确定目标变量和特征变量 target_col = ["Outcome"] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols] # numerical columns num_cols = [x for x in data.columns if x not in cat_cols + target_col] # Binary columns with 2 values bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() # Columns more than 2 values multi_cols = [i for i in cat_cols if i not in bin_cols] # Label encoding Binary columns le = LabelEncoder() for i in bin_cols: data[i] = le.fit_transform(data[i]) # Duplicating columns for multi value columns data = pd.get_dummies(data=data, columns=multi_cols) # Scaling Numerical columns std = StandardScaler() scaled = std.fit_transform(data[num_cols]) scaled = pd.DataFrame(scaled, columns=num_cols) # dropping original values merging scaled values for numerical columns df_data_og = data.copy() data = data.drop(columns=num_cols, axis=1) data = data.merge(scaled, left_index=True, right_index=True, how="left")
这段代码是用来对一个名为 "pima.csv" 的数据集进行数据预处理的,其中包含了以下步骤:
1. 载入数据集并确定目标变量和特征变量;
2. 将特征变量分为二分类特征、多分类特征和数值型特征三类;
3. 对二分类特征进行标签编码(将其转换为数字);
4. 对多分类特征进行独热编码(将其转换为多个二分类特征);
5. 对数值型特征进行标准化(使其均值为0,方差为1);
6. 将原始的特征变量删除,并将标准化后的数值型特征与编码后的特征变量合并。
这些步骤的目的是为了让数据集更加适合用于机器学习算法的训练和测试,从而提高模型的准确性和泛化能力。
阅读全文