pid的公式和模糊pid的公式

时间: 2023-11-14 18:07:25 浏览: 95
PID控制器的公式如下: $$u(t)=K_pe(t)+K_i\int_0^t e(\tau)d\tau +K_d\frac{de(t)}{dt}$$ 其中,$e(t)$为当前偏差,$K_p$、$K_i$、$K_d$分别为比例、积分、微分系数。 模糊PID控制器的公式如下: $$u(t)=K_p e(t)+K_i\int_0^t e(\tau)d\tau +K_d\frac{de(t)}{dt}$$ 其中,$K_p$、$K_i$、$K_d$为经过模糊化处理的比例、积分、微分系数,模糊化处理可以使用模糊逻辑控制等方法。
相关问题

STM32实现模糊PID代码

### 回答1: 以下是一个简单的模糊PID控制器的代码示例,使用STM32的HAL库进行编写: ```c #include "stm32f4xx_hal.h" #include "fuzzy.h" // 定义模糊PID控制器的参数 #define KP 1.0 #define KD 0.1 #define KI 0.05 #define ERROR_THRESHOLD 50 // 定义PWM输出引脚 #define PWM_GPIO_PORT GPIOA #define PWM_GPIO_PIN GPIO_PIN_6 // 定义模糊PID控制器变量 float last_error = 0; float integral = 0; // 定义模糊PID控制器对象 fuzzy_controller_t fuzzy_pid; // 初始化模糊PID控制器 void fuzzy_pid_init(void) { fuzzy_init(&fuzzy_pid); // 设置输入变量 fuzzy_input_variable_t error_input = { .name = "Error", .min = -100, .max = 100, .num_mfs = 5, .mf_names = {"NB", "NM", "ZE", "PM", "PB"}, .mf_ranges = {-100, -60, -20, 20, 60, 100}, .mf_funcs = {fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf}, }; fuzzy_add_input_variable(&fuzzy_pid, &error_input); fuzzy_input_variable_t derror_input = { .name = "DError", .min = -100, .max = 100, .num_mfs = 5, .mf_names = {"NB", "NM", "ZE", "PM", "PB"}, .mf_ranges = {-100, -60, -20, 20, 60, 100}, .mf_funcs = {fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf}, }; fuzzy_add_input_variable(&fuzzy_pid, &derror_input); // 设置输出变量 fuzzy_output_variable_t output = { .name = "Output", .min = 0, .max = 100, .num_mfs = 5, .mf_names = {"NB", "NM", "ZE", "PM", "PB"}, .mf_ranges = {0, 20, 40, 60, 80, 100}, .mf_funcs = {fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf, fuzzy_triangular_mf}, }; fuzzy_add_output_variable(&fuzzy_pid, &output); // 设置规则 fuzzy_rule_t rules[] = { {2, 1, 0}, {2, 2, 1}, {2, 3, 2}, {2, 4, 3}, {2, 5, 4}, {1, 1, 0}, {1, 2, 1}, {1, 3, 2}, {1, 4, 3}, {1, 5, 4}, {0, 1, 1}, {0, 2, 2}, {0, 3, 3}, {0, 4, 4}, {0, 5, 4}, {3, 1, 2}, {3, 2, 3}, {3, 3, 4}, {3, 4, 4}, {3, 5, 4}, {4, 1, 3}, {4, 2, 4}, {4, 3, 4}, {4, 4, 4}, {4, 5, 4}, }; fuzzy_add_rules(&fuzzy_pid, rules, sizeof(rules) / sizeof(fuzzy_rule_t)); } // 获取当前误差值 float get_error(float target, float current) { return target - current; } // 获取当前误差变化率 float get_derror(float error) { return error - last_error; } // 模糊PID控制器计算函数 float fuzzy_pid_compute(float target, float current) { float error = get_error(target, current); float derror = get_derror(error); // 计算模糊PID控制器输出 fuzzy_input_t inputs[] = { {0, error}, {1, derror}, }; float output = fuzzy_defuzzify(&fuzzy_pid, inputs, 2); // 计算PID控制器输出 integral += error; if (integral > ERROR_THRESHOLD) integral = ERROR_THRESHOLD; if (integral < -ERROR_THRESHOLD) integral = -ERROR_THRESHOLD; float pid_output = KP * error + KD * derror + KI * integral; // 更新last_error变量 last_error = error; // 返回模糊PID与PID的加权和 return 0.5 * output + 0.5 * pid_output; } // 初始化PWM输出 void pwm_init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; TIM_HandleTypeDef htim2 = {0}; // 初始化PWM输出引脚 __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = PWM_GPIO_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_TIM2; HAL_GPIO_Init(PWM_GPIO_PORT, &GPIO_InitStruct); // 初始化PWM定时器 __HAL_RCC_TIM2_CLK_ENABLE(); htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 1000; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_PWM_Init(&htim2); // 配置PWM输出通道 TIM_OC_InitTypeDef sConfigOC = {0}; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); // 启动PWM定时器 HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); } int main(void) { // 初始化HAL库 HAL_Init(); // 初始化模糊PID控制器 fuzzy_pid_init(); // 初始化PWM输出 pwm_init(); // 设置目标值 float target = 500; while (1) { // 获取当前值 float current = ADC_GetValue(); // 计算模糊PID输出 float output = fuzzy_pid_compute(target, current); // 设置PWM输出 TIM_HandleTypeDef htim2 = {0}; htim2.Instance = TIM2; TIM_OC_InitTypeDef sConfigOC = {0}; sConfigOC.Pulse = output * 10; HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); // 延时一段时间 HAL_Delay(10); } } ``` 需要注意的是,上述代码中的`ADC_GetValue`函数需要根据实际情况进行实现,用于获取当前的传感器数值。同时,PWM输出的初始化和设置也需要根据具体情况进行调整。 ### 回答2: 模糊PID控制是一种基于模糊逻辑的PID控制方法。在STM32微控制器上实现模糊PID控制,需要进行以下步骤: 步骤1:初始化PID控制器参数。首先,需要定义和初始化PID控制器的比例系数Kp、积分系数Ki和微分系数Kd,用于计算控制量。同时,还需要设置控制器的输出限制范围,以确保输出信号在合理范围内。 步骤2:获取系统状态和期望状态。通过传感器或其他方式获取系统当前的状态(例如位置、速度或温度等),并获取期望状态作为控制器的输入量。 步骤3:模糊化输入输出变量。将输入和输出变量进行模糊化处理,将连续的变量转化为离散的模糊概念。通过设定模糊规则和隶属函数,将输入输出变量映射到模糊集合。 步骤4:模糊推理。使用设定好的模糊规则,对模糊集合进行模糊推理,输出一个模糊的控制量。 步骤5:解模糊化。对模糊控制量进行解模糊操作,将模糊信号转化为实际控制量。 步骤6:计算PID控制量。根据实际控制量和期望状态之间的误差,使用PID控制算法计算出最终的控制量。 步骤7:输出控制量。将计算得到的控制量输出给执行器,例如驱动电机或控制继电器等,控制系统实现根据期望状态来调整当前状态。 综上所述,实现模糊PID控制的关键在于初始化PID参数、模糊化输入输出变量、模糊推理、解模糊化和PID控制量计算等步骤。在STM32微控制器上,可以通过编程实现这些步骤,并结合模拟电路和执行器等硬件元件,实现模糊PID控制。 ### 回答3: 模糊PID控制器是一种应用模糊逻辑的PID控制器,用于系统的自适应控制。在STM32上实现模糊PID代码可以通过以下步骤进行: 1. 首先,需要定义模糊PID控制器所需的输入变量、输出变量和模糊规则。输入变量可以是误差(error)和误差变化率(error rate),输出变量可以是控制量(output)。模糊规则是模糊逻辑的核心,它定义了输入变量与输出变量之间的关系。 2. 在STM32上编写代码,读取系统的当前状态和目标状态,并计算误差和误差变化率。可以使用STM32的定时器来实时采样系统状态,并在固定的时间间隔内更新控制量。 3. 根据计算得到的误差和误差变化率,使用模糊规则来计算输出变量。模糊规则可以使用一系列if-then规则来表示。例如,如果误差大且误差变化率大,则输出变量应该增加。 4. 将模糊输出变量转换为PID控制器的输入量。可以根据具体需求选择合适的转换方法,如将输出变量映射到PID控制器的目标范围内。 5. 在STM32上实现PID控制器的代码。PID控制器的输入量是模糊输出变量,输出量是最终的控制量。可以根据PID控制器的公式来计算控制量,并将其应用于系统。 6. 定义合适的响应策略,使系统能够根据控制量的变化来调整自身状态。通过对输出量的实时监测,可以采取适当的措施来维持系统的稳定性和准确性。 通过以上步骤,可以在STM32上实现模糊PID控制器的代码,并将其应用于系统中。这样可以实现系统的自适应控制,提高系统的稳定性和性能。

下肢外骨骼机器人的模糊pid控制设计

下肢外骨骼机器人的控制需要考虑到人体的生理特性和机器人的稳定性。模糊PID控制是一种适用于非线性系统的控制方法,可以更好地处理系统的误差和不确定性。下面是一个简单的模糊PID控制设计流程: 1. 建立模糊控制器模型,包括输入和输出变量。 2. 设计模糊规则库,包括规则的数量和形式。 3. 根据实际情况选择模糊控制器的输入变量和输出变量。 4. 设计模糊控制器的输入变量的模糊集合和模糊隶属函数。 5. 设计模糊控制器的输出变量的模糊集合和模糊隶属函数。 6. 设计模糊控制器的模糊规则库,包括模糊规则的数量和形式。 7. 根据模糊规则库计算输出变量的模糊值。 8. 根据模糊值计算输出变量的实际值。 9. 根据实际值和期望值计算误差,然后根据PID控制器的公式计算PID控制器的输出。 10. 将PID控制器的输出作为控制信号输出到下肢外骨骼机器人,实现控制。 需要注意的是,模糊PID控制器的设计需要根据具体的下肢外骨骼机器人进行优化和调整,以达到最佳的控制效果。同时,也需要对模糊PID控制器进行实时监测和调整,以保证控制器的稳定性和可靠性。

相关推荐

最新推荐

recommend-type

51单片机PID算法程序

同时,为了避免控制系统的振荡和超调,可能需要引入额外的滤波或者调整策略,如自适应PID、模糊PID等。 总的来说,51单片机上的PID算法程序是数字控制系统中的关键组成部分,通过精心设计和参数调优,可以有效地...
recommend-type

pid算法详解 ppt

6. **发展中的PID算法**:除了基本的PID,还有PI、PD、比例微分积分-微分(PIDD)等变型,以及模糊PID、神经网络PID等结合其他控制理论的智能PID算法。 7. **PID在不同领域的应用**:PID算法不仅应用于传统的工业...
recommend-type

硅水凝胶日戴镜三年影响调查:舒适度提升与角膜变化

本文是一篇深入研究硅水凝胶日戴隐形眼镜对角膜长期影响的论文,由Beata Kettesy等人在2015年发表。标题指出,调查的目标是第二代Lotrafilcon B硅水凝胶(SiH)隐形眼镜在连续三年每日佩戴下的角膜变化。研究对象分为两组:一组是已习惯佩戴传统水凝胶镜片并转用Lotrafilcon B的患者(Group 1,共28人),另一组是初次接触隐形眼镜的新手佩戴者(Group 2,27人)。 研究方法采用主观评价,通过自我报告问卷评估每位患者的眼部舒适度。同时,通过接触式偏振显微镜对角膜进行详细的分析,以测量佩戴Lotrafilcon B SiH隐形眼镜后的不同时间点——即佩戴四周、一个月、六个月、一年、两年和三年后的角膜厚度以及内皮层状况。实验结果显示,Group 1的患者在主观舒适度上有所改善,表明新镜片可能减少了不适感。然而,文章并未详细透露关于角膜具体变化的数据或观察到的长期影响,这可能是为了进一步的临床研究和数据分析。 这篇论文的关键知识点包括: 1. 硅水凝胶隐形眼镜的长期影响:关注了新型Lotrafilcon B材质的隐形眼镜在长时间(三年)日常佩戴后对角膜的影响,这对于隐形眼镜材料的研发和选择具有重要意义,因为它可能影响用户的舒适度和眼睛健康。 2. 分组设计:通过对比现有水凝胶用户和新手用户的体验,研究了适应性因素在舒适度和潜在生理变化中的作用。 3. 角膜参数测量:使用先进的接触式偏振显微镜技术,提供了量化数据来评估角膜的结构变化,这是评估隐形眼镜安全性的重要依据。 4. 舒适度评估:主观问卷的使用反映了用户对新镜片的接受程度,是衡量隐形眼镜质量的重要指标。 5. 结论与未来研究方向:初步的结果表明了积极的趋势,但可能还存在未详述的详细分析或可能的风险,暗示了该领域还有待更深入的研究。 这篇论文提供了关于硅水凝胶隐形眼镜长期佩戴对角膜影响的初步洞察,为隐形眼镜的设计优化和用户指导提供了有价值的数据基础。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

复杂性分析工具自动化指南:解放人力,提升效率

![复杂性分析工具自动化指南:解放人力,提升效率](https://ask.qcloudimg.com/http-save/8934644/afc79812e2ed8d49b04eddfe7f36ae28.png) # 1. 复杂性分析工具概述** 复杂性分析工具是用于评估和管理软件系统复杂性的工具。它们提供了一系列功能,包括: - **代码度量:**计算代码大小、复杂度和可维护性等指标。 - **可视化:**生成代码结构、依赖关系和影响分析图。 - **规则检查:**识别违反最佳实践或编码标准的代码。 这些工具对于理解和管理软件系统复杂性至关重要,有助于提高代码质量、减少维护成本并降低
recommend-type

'uvicorn' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

'uvicorn' 是一个用于运行现代Python web应用程序的高性能异步服务器,特别适用于使用WebSockets、ASGI协议的应用,如FastAPI和Django等。当你在命令行尝试运行 'uvicorn' 但是收到这个错误提示时,这意味着: 1. **不在系统PATH中**:uvicorn未添加到系统的环境变量`PATH`,因此命令行找不到它。你需要将其安装目录添加到系统PATH,或者直接使用全路径运行。 2. **未安装**:你尚未安装 uvicorn,可以使用 `pip install uvicorn` 来安装。 3. **版本问题**:如果已安装,确认你安装的是支持当前
recommend-type

光纤集成布拉格光散射微光谱学:迈向体内布拉格内窥镜

本文主要探讨了纤维集成布拉格光散射微光谱学(Fiber-integrated Brillouin microspectroscopy)在实现布拉格内窥镜(Brillouin endoscopy)方面的潜力与挑战。布拉格成像(Brillouin Imaging, BI)作为一种快速发展的技术,它在微尺度上用于研究组织和生物材料的机械特性,对于疾病的早期诊断具有巨大的应用前景。传统的BI方法虽然理论上适用于活体和现场测量,但在实际应用中,尤其是在医疗领域进行体内检测,例如通过柔性导管到达特定部位,尚未得到广泛报道。 作者们在该研究中首次实验性地探索了将布拉格光散射显微镜与标准光纤组件相结合,以构建出一种布拉格内窥镜系统。他们分别展示了单光纤和双光纤内窥镜的设计和性能评估。然而,文章指出一个关键挑战在于光纤内的强烈后向布拉格散射,这可能会对内窥镜的信号质量和分辨率产生负面影响。解决这个问题对于提升布拉格内窥镜在生物医学领域的实用性和准确性至关重要。 通过集成光纤技术,布拉格内窥镜有望实现对体内微结构的实时、非侵入式探测,这对于肿瘤检测、心血管疾病监测以及组织修复评估等具有显著的意义。此外,优化的光纤设计、信号处理算法以及新型材料的应用可能会进一步提高其灵敏度和空间分辨率,从而推动这一领域向着临床应用迈进一步。 这项研究为布拉格内窥镜技术的未来发展提供了一个重要的里程碑,展示了将其与光纤集成的可能性,并强调了未来研究需要解决的关键技术问题。随着技术的进步,布拉格内窥镜有可能成为医疗诊断工具箱中的一个重要组成部分,对改善人类健康有着深远的影响。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

复杂性分析工具实战指南:从理论到实践,掌握应用技巧

![复杂性分析工具](https://img-blog.csdnimg.cn/direct/10b3d525e8c34c2db0ce54b6edaec5c0.png) # 1. 复杂性分析工具概述 复杂性分析工具是软件开发中不可或缺的工具,它能够帮助开发人员量化和评估代码的复杂性。通过了解代码的复杂性,开发人员可以识别和解决潜在问题,从而提高软件的可维护性、可读性和可测试性。 复杂性分析工具通常使用各种度量标准来衡量代码的复杂性,例如圈复杂度、维护性指数和认知复杂度。这些度量标准考虑了代码结构、耦合度和内聚度等因素,为开发人员提供了代码复杂性的全面视图。 复杂性分析工具不仅可以帮助开发人
recommend-type

二进制反码求和c++

在C++中,计算两个二进制数的反码相加通常用于处理有符号整数的运算,因为计算机内部并不直接支持两个正数相加然后判断结果是否溢出的操作。以下是基本步骤: 1. 首先,你需要将两个有符号整数转换成无符号的二进制形式,这可以使用`bitset`库或者手动通过位操作完成。 2. 对于每个二进制位,计算其反码。对于0,反码还是0;对于1,反码就是1(即取反)。这是因为,有符号数的最高位(符号位)代表了数的正负,其他位用于存储数值。 3. 如果你有两个8位(如char类型)的二进制数,你可以对它们逐位求异或(`XOR`),得到的结果就是反码相加的结果。因为异或操作可以消除低位的进位,而高位的进位则取