for i in np.arange(len(radar_lines)): radar_line=radar_lines[i] pcd_line=pcd_lines[i] pcd_obj = Object3d(pcd_line) center = np.array(pcd_obj.t) center[2] = center[2]+pcd_obj.h # ry=obj.ry heading_angle = -pcd_obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (pcd_obj.l, pcd_obj.w, pcd_obj.h) # all vertical range = (pcd_obj.l, pcd_obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) cropped_cloud = pcd.crop(bbx) # if set colors colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([cropped_cloud, bbx]) print(pcd_obj.h) radar_obj = Object2d(radar_line) center = [radar_obj.box2d[0], radar_obj.box2d[1]] w = radar_obj.box2d[2] h = radar_obj.box2d[3] angle = radar_obj.angle # rect = cv2.minAreaRect(cnt) box = cv2.boxPoints((center, (w, h), angle)) print(box) box = np.int0(box) cv2.drawContours(im, [box], 0, (0, 0, 255), 2) mask = np.zeros_like(im) # 使用旋转框的角点绘制多边形掩膜 cv2.drawContours(mask, [box], 0, (255, 255, 255), -1) # 使用掩膜提取旋转框内的像素 masked_image = cv2.bitwise_and(im, mask) cv2.imshow("2d bbx", masked_image) cv2.waitKey(0) cv2.destroyAllWindows() 这里的mask里面都是1,以外的都是0,所以mask加起来就是2dbox里radar image的像素个数。masked_image里,mask以外的都是0,mask内的都是radar的值,所以masked_image里面的都加起来就是2dbox 里radar image的反射强度值。这两个一除就能算radar里有车object的区域里每个像素的平均反射强度。根据上述截取的部分代码和信息,添加代码,算出区域内的平均反射强度并输出。
时间: 2024-01-08 07:04:03 浏览: 113
concatenate_clouds.zip_PCD_clouds_pcd 合并
可以在下列代码注释的下面加上计算平均反射强度的代码:
```
# 使用掩膜提取旋转框内的像素
masked_image = cv2.bitwise_and(im, mask)
# 计算区域内的平均反射强度
masked_image_values = [masked_image[i,j] for i in range(masked_image.shape[0]) for j in range(masked_image.shape[1])]
average_reflectivity = sum(masked_image_values) / len(masked_image_values)
print("区域内的平均反射强度为:", average_reflectivity)
cv2.imshow("2d bbx", masked_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,`masked_image_values`是一个列表,包含了所有在2D框内的radar image的像素值,`average_reflectivity`是平均反射强度的计算结果。
阅读全文