枚举法实现表达式求值

时间: 2023-10-31 07:06:12 浏览: 42
枚举法实现表达式求值是一种基于中缀表达式的求值方法。其基本思路是将中缀表达式转化为后缀表达式,然后通过栈来实现后缀表达式的求值。具体步骤如下: 1. 初始化两个栈,一个用于存储操作数,一个用于存储运算符。 2. 从左到右遍历中缀表达式的每个元素,如果是操作数,则直接入操作数栈;如果是运算符,则与运算符栈顶元素比较优先级,如果当前运算符优先级较低,则将运算符栈顶元素弹出并与操作数栈顶的两个元素进行运算,将结果入操作数栈,直到当前运算符优先级大于等于运算符栈顶元素的优先级,然后将当前运算符入运算符栈。 3. 当中缀表达式遍历完后,将运算符栈中的所有运算符依次弹出并与操作数栈顶的两个元素进行运算,将结果入操作数栈,直到运算符栈为空。 4. 最终操作数栈中的唯一元素即为表达式的求值结果。
相关问题

c语言lisp表达式求值

### 回答1: 在 C 语言中实现 Lisp 表达式求值的话,需要用到栈和逆波兰表达式的思想。 首先,我们需要将 Lisp 表达式转化为逆波兰表达式。逆波兰表达式是一种无需括号的表达式表示方法,它将操作符放在操作数的后面,例如: Lisp 表达式:(+ 1 2) 逆波兰表达式:1 2 + Lisp 表达式:(sqrt (* x x)) 逆波兰表达式:x x * sqrt 转化为逆波兰表达式后,我们就可以通过栈来计算表达式的值了。具体的实现步骤如下: 1. 对逆波兰表达式进行遍历,遇到数字则压入栈中; 2. 遇到操作符则从栈中弹出相应数目的数字,进行运算,并将结果压入栈中; 3. 遍历完后,栈中剩下的数字就是表达式的值。 以下是一个简单的 C 语言实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #define STACK_SIZE 100 // 栈结构体 typedef struct stack { double data[STACK_SIZE]; int top; } Stack; // 初始化栈 void init(Stack *s) { s->top = -1; } // 判断栈是否为空 int is_empty(Stack *s) { return s->top == -1; } // 判断栈是否已满 int is_full(Stack *s) { return s->top == STACK_SIZE - 1; } // 入栈 void push(Stack *s, double num) { if (is_full(s)) { printf("Stack is full!\n"); exit(1); } s->data[++s->top] = num; } // 出栈 double pop(Stack *s) { if (is_empty(s)) { printf("Stack is empty!\n"); exit(1); } return s->data[s->top--]; } // 计算逆波兰表达式的值 double eval(char **tokens, int size) { Stack s; init(&s); double num1, num2; for (int i = 0; i < size; i++) { if (strcmp(tokens[i], "+") == 0) { num2 = pop(&s); num1 = pop(&s); push(&s, num1 + num2); } else if (strcmp(tokens[i], "-") == 0) { num2 = pop(&s); num1 = pop(&s); push(&s, num1 - num2); } else if (strcmp(tokens[i], "*") == 0) { num2 = pop(&s); num1 = pop(&s); push(&s, num1 * num2); } else if (strcmp(tokens[i], "/") == 0) { num2 = pop(&s); num1 = pop(&s); push(&s, num1 / num2); } else if (strcmp(tokens[i], "sqrt") == 0) { num1 = pop(&s); push(&s, sqrt(num1)); } else { push(&s, atof(tokens[i])); } } return pop(&s); } // 将 Lisp 表达式转化为逆波兰表达式 void parse(char *expr, char **tokens, int *size) { char *token = strtok(expr, "()"); *size = 0; while (token != NULL) { tokens[(*size)++] = token; token = strtok(NULL, "()"); } } int main() { char expr[] = "(+ 1 2)"; char *tokens[STACK_SIZE]; int size; parse(expr, tokens, &size); double result = eval(tokens, size); printf("%s = %lf\n", expr, result); char expr2[] = "(sqrt (* x x))"; char *tokens2[STACK_SIZE]; int size2; parse(expr2, tokens2, &size2); double result2 = eval(tokens2, size2); printf("%s = %lf\n", expr2, result2); return 0; } ``` ### 回答2: C语言是一种面向过程、结构化的编程语言,而Lisp是一种基于列表操作的函数式编程语言。要在C语言中实现对Lisp表达式的求值,可以采用递归的方式来处理列表。 首先,我们需要定义表达式的数据结构。可以使用结构体来表示表达式,包括两个属性:类型和值。类型可以用枚举类型来表示,可以包括数字、运算符、变量等。值则根据类型的不同,有不同的表示方式,比如数字类型可以用浮点数来表示,运算符可以用字符串表示。 接下来,定义一个递归的函数来求值表达式。首先判断表达式的类型,如果是数字类型,则直接返回该数字。如果是运算符类型,则根据运算符对表达式的其他部分进行求值,并进行相应的运算。如果是变量类型,则返回相应的变量值。 在求值过程中,需要注意处理列表的情况。如果表达式是一个嵌套的列表,则可以用递归的方式对列表的元素进行求值。例如,对于表达式 (+ 1 2),可以先求解 (+ 1 2) 子表达式,然后再对子表达式进行求值。 在C语言中实现Lisp表达式求值需要考虑到Lisp的特性,比如函数的递归和列表的嵌套。通过合理的数据结构和递归算法,可以实现对Lisp表达式的求值。 ### 回答3: C语言是一种广泛应用于系统和应用程序开发的编程语言,它的语法和语义相对较为简单。Lisp(即LISt Processing的简称)则是一种基于列表的编程语言,它以表达式为基本单位进行计算和求值。 在C语言中,处理Lisp表达式的过程通常需要通过编写相应的解释器或编译器来完成。解释器的主要任务是逐个解析Lisp表达式,并根据表达式的结构和规则进行计算和求值。编译器则将Lisp表达式转换为机器语言的形式,以便于直接执行。 要求值一个Lisp表达式,我们可以分为以下几个步骤: 1. 解析表达式:首先需要将Lisp表达式分解为基本元素,如运算符、操作数和括号等。这可以通过递归方式来实现,从而逐层解析表达式的嵌套结构。 2. 构建语法树:将解析后的表达式构建成语法树,以便于后续的计算和求值操作。语法树由节点和边组成,每个节点代表一个表达式的元素,边表示元素之间的关系。 3. 遍历语法树:通过深度优先搜索算法遍历语法树,从根节点开始依次对子节点进行计算和求值,直至到达叶子节点。 4. 计算和求值:根据不同的运算符和操作数,执行相应的计算和求值操作。这可能涉及到数值运算、逻辑运算、条件判断等。 5. 返回结果:根据表达式的结果,将最终的计算结果返回给调用者或打印在屏幕上。 需要注意的是,C语言自身并没有原生支持Lisp表达式求值的功能,因此我们需要通过自己编写相关的代码来实现。幸运的是,由于C语言的灵活性和强大的表达能力,我们可以利用其丰富的数据结构和算法特性来实现一个简单的Lisp表达式求值器。

002:最佳加法表达式 查看提交统计提问 总时间限制: 1000ms 内存限制: 65536kB 描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值。例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36 输入 有不超过15组数据 每组数据两行。第一行是整数m,表示有m个加号要放( 0<=m<=50) 第二行是若干个数字。数字总数n不超过50,且 m <= n-1 输出 对每组数据,输出最小加法表达式的值 样例输入 2 123456 1 123456 4 12345 样例输出 102 579 15 提示 要用到高精度计算,即用数组来存放long long 都装不下的大整数,并用模拟列竖式的办法进行大整数的加法。

这道题需要用到高精度计算,即用数组来存放long long 都装不下的大整数,并用模拟列竖式的办法进行大整数的加法。具体实现可以参考一些高精度模板。 以下是一个可能的解法: ``` #include <iostream> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 55; int m, n; int a[MAXN]; int f[MAXN][MAXN]; int main() { while (cin >> m) { cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } memset(f, 0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= min(i, m); j++) { for (int k = j-1; k < i; k++) { f[i][j] = min(f[i][j], f[k][j-1] + (a[i]-a[k+1])); } } } cout << f[n][m] << endl; } return 0; } ``` 对于每组数据,我们先读入m和n,然后读入n个数字。接着,我们用f[i][j]表示前i个数字中放j个加号所得到的最小值。初始时,f[0][0] = 0。 接下来,我们考虑状态转移。对于第i个数字,我们可以选择在它前面放一个加号,也可以不放。如果不放,那么f[i][j]就等于f[i-1][j]。如果放,那么我们需要在前面j-1个数字中再放一个加号,使得前面的数字和最小。因此,我们可以枚举前面的加号放在哪里,然后取最小值即可。 最后,输出f[n][m]即可。 注意,这里的加号是指在数字之间放置的加号,而不是在数字后面加上一个数。因此,我们需要在读入数字时,将它们存入一个数组中,然后在状态转移时,计算两个数字之间的差。

相关推荐

zip

最新推荐

recommend-type

C++递归算法实例代码

2. 递归算法的应用:在本文中,递归算法被应用于解决逻辑表达式的判断问题,通过枚举的思路来判断一个规定的逻辑表达式是不是永真式。递归算法使得计算过程变得更加高效和简洁。 3. 位运算的应用:在本文中,位运算...
recommend-type

java中BigDecimal的操作方法

其中,`RoundingMode`枚举提供了多种舍入策略,如`ROUND_HALF_UP`(四舍五入)和`ROUND_HALF_DOWN`(逢五不进,逢五不退)等。需要注意的是,当使用`ROUND_HALF_DOWN`时,例如: ```java System.out.println(divide("67...
recommend-type

微软C#语言规范,C#语言教程中文版

7.1.1 表达式的值 130 7.2 静态和动态绑定 130 7.2.1 绑定时间 131 7.2.2 动态绑定 131 7.2.3 构成表达式的类型 131 7.3 运算符 131 7.3.1 运算符的优先级和顺序关联性 132 7.3.2 运算符重载 133 7.3.3 一元运算符...
recommend-type

C#_语言规范_4.0_中文版

7.1.1 表达式的值 130 7.2 静态和动态绑定 130 7.2.1 绑定时间 131 7.2.2 动态绑定 131 7.2.3 构成表达式的类型 131 7.3 运算符 131 7.3.1 运算符的优先级和顺序关联性 132 7.3.2 运算符重载 133 7.3.3 一元运算符...
recommend-type

C语言程序设计标准教程

第二章: 数据类型、运算符、表达式 C语言的数据类型  在第一课中,我们已经看到程序中使用的各种变量都应预先加以说明,即先说明,后使用。对变量的说明可以包括三个方面: ?数据类型 ?存储类型 ?作用域  在本课...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。