FFT.ComplexToMagnitude

时间: 2024-02-10 17:37:54 浏览: 16
FFT.ComplexToMagnitude 是一种将复数转换为幅度的方法,常用于信号处理和频谱分析中。在频域分析中,复数表示信号的幅度和相位,而幅度表示信号的强度。因此,通过将复数转换为幅度,可以更好地理解信号的特征。 在具体实现中,FFT.ComplexToMagnitude 可以将一个由 N 个复数组成的数组转换为一个由 N 个实数组成的数组,其中每个实数表示对应复数的幅度。这个方法通常是在进行傅里叶变换后使用的,因为傅里叶变换的结果是一个由复数组成的数组。 需要注意的是,由于幅度是非负的,因此在进行转换时,通常会使用平方根函数来计算幅度的值。具体实现可以参考以下代码片段: ```csharp Complex[] complexData = ...; // 复数数组 double[] magnitudeData = new double[complexData.Length]; // 幅度数组 for (int i = 0; i < complexData.Length; i++) { magnitudeData[i] = Math.Sqrt(complexData[i].Real * complexData[i].Real + complexData[i].Imaginary * complexData[i].Imaginary); } // magnitudeData 数组现在包含了 complexData 数组中每个复数的幅度值 ```
相关问题

#include "arduinoFFT.h" arduinoFFT FFT = arduinoFFT(); const uint16_t samples = 64; const double signalFrequency = 1000; const double samplingFrequency = 5000; const uint8_t amplitude = 100; double vReal[samples]; double vImag[samples]; #define SCL_INDEX 0x00 #define SCL_TIME 0x01 #define SCL_FREQUENCY 0x02 #define SCL_PLOT 0x03 void setup() { Serial.begin(115200); while(!Serial); Serial.println("Ready"); } void loop() { double cycles = (((samples-1) * signalFrequency) / samplingFrequency); for (uint16_t i = 0; i < samples; i++) { vReal[i] = int8_t((amplitude * (sin((i * (twoPi * cycles)) / samples))) / 2.0); vImag[i] = 0.0; } Serial.println("Data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */ Serial.println("Weighed data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */ Serial.println("Computed Real values:"); PrintVector(vReal, samples, SCL_INDEX); Serial.println("Computed Imaginary values:"); PrintVector(vImag, samples, SCL_INDEX); FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */ Serial.println("Computed magnitudes:"); PrintVector(vReal, (samples >> 1), SCL_FREQUENCY); double x; double v; FFT.MajorPeak(vReal, samples, samplingFrequency, &x, &v); Serial.print(x, 6); Serial.print(", "); Serial.println(v, 6); while(1); } void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType) { for (uint16_t i = 0; i < bufferSize; i++) { double abscissa; switch (scaleType) { case SCL_INDEX: abscissa = (i * 1.0); break; case SCL_TIME: abscissa = ((i * 1.0) / samplingFrequency); break; case SCL_FREQUENCY: abscissa = ((i * 1.0 * samplingFrequency) / samples); break; } Serial.print(abscissa, 6); if(scaleType==SCL_FREQUENCY) Serial.print("Hz"); Serial.print(" "); Serial.println(vData[i], 4); } Serial.println(); } 根据此历程中fft转换的方法修改oled代码

根据你提供的代码,你想要修改 OLED 显示代码来显示 FFT 转换的结果。我已经修改了代码,添加了 OLED 显示的相关部分。请注意,这里假设你已经连接了 OLED 显示屏并正确配置了 Arduino 板。 ```c++ #include <Wire.h> #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> #include "arduinoFFT.h" #define OLED_RESET 4 Adafruit_SSD1306 display(OLED_RESET); arduinoFFT FFT = arduinoFFT(); const uint16_t samples = 64; const double signalFrequency = 1000; const double samplingFrequency = 5000; const uint8_t amplitude = 100; double vReal[samples]; double vImag[samples]; void setup() { Serial.begin(115200); while (!Serial) ; Serial.println("Ready"); display.begin(SSD1306_SWITCHCAPVCC, 0x3C); display.clearDisplay(); display.setTextColor(WHITE); display.setTextSize(1); } void loop() { double cycles = (((samples - 1) * signalFrequency) / samplingFrequency); for (uint16_t i = 0; i < samples; i++) { vReal[i] = int8_t((amplitude * (sin((i * (twoPi * cycles)) / samples))) / 2.0); vImag[i] = 0.0; } display.clearDisplay(); Serial.println("Data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); Serial.println("Weighed data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Compute(vReal, vImag, samples, FFT_FORWARD); Serial.println("Computed Real values:"); PrintVector(vReal, samples, SCL_INDEX); Serial.println("Computed Imaginary values:"); PrintVector(vImag, samples, SCL_INDEX); FFT.ComplexToMagnitude(vReal, vImag, samples); Serial.println("Computed magnitudes:"); PrintVector(vReal, (samples >> 1), SCL_FREQUENCY); double x; double v; FFT.MajorPeak(vReal, samples, samplingFrequency, &x, &v); Serial.print(x, 6); Serial.print(", "); Serial.println(v, 6); // 显示 FFT 转换的结果 display.setCursor(0, 0); display.print("Frequency: "); display.println(x, 6); display.print("Magnitude: "); display.println(v, 6); display.display(); while (1) ; } void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType) { for (uint16_t i = 0; i < bufferSize; i++) { double abscissa; switch (scaleType) { case SCL_INDEX: abscissa = (i * 1.0); break; case SCL_TIME: abscissa = ((i * 1.0) / samplingFrequency); break; case SCL_FREQUENCY: abscissa = ((i * 1.0 * samplingFrequency) / samples); break; } Serial.print(abscissa, 6); if (scaleType == SCL_FREQUENCY) Serial.print("Hz"); Serial.print(" "); Serial.println(vData[i], 4); } Serial.println(); } ``` 在这个修改后的代码中,我添加了 OLED 显示的相关部分。在 `loop` 函数中,我们在每次进行 FFT 转换后,通过 `display` 对象显示频率和幅值的结果。 请确保你已经连接了 OLED 显示屏,并将其引脚与 Arduino 板正确连接。如果需要,你可以根据 OLED 显示屏的具体型号和引脚配置进行相应的修改。 希望这个修改后的代码能够满足你的需求!如果你还有其他问题,请随时提问。

Arduino通过内置ADC对采取的电压进行FFT变换,求出基波去掉,得出交流电压值的程序

以下是一个示例程序,用于在Arduino上使用内置ADC进行FFT变换,去除基波,并计算交流电压值: ```c #include <FFT.h> // 引入FFT库 // 定义采样参数 const int samplingFrequency = 1000; // 采样频率,单位为赫兹 const int samplingPeriod = 1000 / samplingFrequency; // 采样周期,单位为毫秒 const int numSamples = 1024; // 采样点数,必须为2的幂次方 // 定义ADC引脚 const int analogPin = A0; // 采样数组 int samples[numSamples]; void setup() { // 初始化串口 Serial.begin(9600); // 初始化ADC引脚 pinMode(analogPin, INPUT); // 设置ADC参考电压为默认值(5V) analogReference(DEFAULT); } void loop() { // 进行采样 for (int i = 0; i < numSamples; i++) { samples[i] = analogRead(analogPin); delay(samplingPeriod); } // 执行FFT变换 FFT.Windowing(samples, numSamples, FFT_WIN_TYP_HAMMING); // 应用窗函数 FFT.Compute(samples, numSamples); // 执行FFT变换 FFT.ComplexToMagnitude(samples, numSamples); // 计算幅值谱 // 寻找基波频率成分的索引 int index = FFT.MajorPeak(samples, numSamples); // 将基波频率成分幅值置为零 samples[index] = 0; // 计算交流电压值 float rms = FFT.Mean(samples, numSamples); // 计算均方根值 float voltage = rms * (5.0 / 1023.0); // 将ADC值转换为电压值(假设使用5V参考电压) // 输出交流电压值 Serial.print("AC Voltage: "); Serial.print(voltage); Serial.println(" V"); } ``` 在示例程序中,我们使用了Arduino的FFT库,需要先下载并安装该库。然后,程序通过ADC对电压进行采样,将采样数据进行FFT变换,并找到基波频率成分的索引。接下来,将基波频率成分的幅值置为零,计算余下频谱成分的均方根值,并将其转换为交流电压值进行输出。 请注意,示例程序中假设使用的是5V参考电压,你可以根据实际情况进行适当修改。另外,你可能需要根据你的电路设计和需求进行一些调整和优化。

相关推荐

最新推荐

recommend-type

Matlab的FFT算法程序-MATLAB_FFT.doc

Matlab的FFT算法程序-MATLAB_FFT.doc 里面有基2时间抽取的FFT 还有基2频率抽取的FFT 程序相当的简单 与MATLAB中的FFT计算结果是一样的
recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平